scholarly journals Effects of maternal separation and antidepressant drug on epigenetic regulation of the brain-derived neurotrophic factor exon I promoter in the adult rat hippocampus

2017 ◽  
Vol 72 (4) ◽  
pp. 255-265 ◽  
Author(s):  
Sung Woo Park ◽  
Mi Kyoung Seo ◽  
Jung Goo Lee ◽  
Le Thi Hien ◽  
Young Hoon Kim
2011 ◽  
Vol 23 (1) ◽  
pp. 20-30 ◽  
Author(s):  
Jing-Jing Li ◽  
Yong-Gui Yuan ◽  
Gang Hou ◽  
Xiang-Rong Zhang

Background: The molecular pathogenesis of depression and psychopharmacology of antidepressants remain elusive. Recent hypotheses suggest that changes in neurogenesis and plasticity may underlie the aetiology of depression. The hippocampus is affected by depression and shows neuronal remodelling during adulthood.Objective: The present study on the adult rat hippocampus, was to evaluate the dose-related effects of chronic venlafaxine on the expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic-AMP response element binding protein (pCREB).Methods: Sprague-Dawley rats were exposed to a variety of chronic unpredictable stressors (CUSs) to establish a depression model. Rats were treated for either 14 or 28 days with venlafaxine (5 and 10 mg/kg, respectively). The hippocampal expression of pCREB and BDNF mRNA and protein was assessed by using immunohistochemistry, western blotting and reverse transcription polymerase chain reaction (RT-PCR).Results: Rats subjected to CUS procedure consumed less sucrose solution compared with non-stressed rats. The CUS influenced exploratory activity resulting in a reduction of the motility counts. Chronic low dose (5 mg/kg, 14 and 28 days), but not high dose (10 mg/kg, 14 and 28 days) of venlafaxine treatment increased the expression of pCREB and BDNF mRNA and protein in the CUS rat hippocampus.Conclusion: Neuronal plasticity-associated proteins such as pCREB and BDNF play an important role both in stress-related depression and in antidepressant effect.


2021 ◽  
Vol 114 ◽  
pp. 101946
Author(s):  
Reza Sardar ◽  
Javad Hami ◽  
Mansoureh Soleimani ◽  
Mohammad-Taghi Joghataei ◽  
Reza Shirazi ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jeremy J. Walsh ◽  
Amedeo D’Angiulli ◽  
Jameason D. Cameron ◽  
Ronald J. Sigal ◽  
Glen P. Kenny ◽  
...  

Obesity in youth increases the risk of type 2 diabetes (T2D), and both are risk factors for neurocognitive deficits. Exercise attenuates the risk of obesity and T2D while improving cognitive function. In adults, these benefits are associated with the actions of the brain-derived neurotrophic factor (BDNF), a protein critical in modulating neuroplasticity, glucose regulation, fat oxidation, and appetite regulation in adults. However, little research exists in youth. This study examined the associations between changes in diabetes risk factors and changes in BDNF levels after 6 months of exercise training in adolescents with obesity. The sample consisted of 202 postpubertal adolescents with obesity (70% females) aged 14–18 years who were randomized to 6 months of aerobic and/or resistance training or nonexercise control. All participants received a healthy eating plan designed to induce a 250/kcal deficit per day. Resting serum BDNF levels and diabetes risk factors, such as fasting glucose, insulin, homeostasis model assessment (HOMA-B—beta cell insulin secretory capacity) and (HOMA-IS—insulin sensitivity), and hemoglobin A1c (HbA1c), were measured after an overnight fast at baseline and 6 months. There were no significant intergroup differences on changes in BDNF or diabetes risk factors. In the exercise group, increases in BDNF were associated with reductions in fasting glucose (β = −6.57, SE = 3.37, p=0.05) and increases in HOMA-B (β = 0.093, SE = 0.03, p=0.004) after controlling for confounders. No associations were found between changes in diabetes risk factors and BDNF in controls. In conclusion, exercise-induced reductions in some diabetes risk factors were associated with increases in BDNF in adolescents with obesity, suggesting that exercise training may be an effective strategy to promote metabolic health and increases in BDNF, a protein favoring neuroplasticity. This trial is registered with ClinicalTrials.gov NCT00195858, September 12, 2005 (funded by the Canadian Institutes of Health Research).


Sign in / Sign up

Export Citation Format

Share Document