scholarly journals Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors

2020 ◽  
Vol 70 (7) ◽  
pp. 379-390
Author(s):  
Michiyuki Matsuda ◽  
Kenta Terai



2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.





2017 ◽  
Vol 39 (3) ◽  
pp. 234-256
Author(s):  
Editorial Board

NORMAL AND CANCER STEM CELLS: DISCOVERY, DIAGNOSIS AND THERAPY INTERNATIONAL SCIENTIFIC CONFERENCE R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv October 5–6, 2017



Author(s):  
Emmanuel Gabriel ◽  
Minhyung Kim ◽  
Daniel Fisher ◽  
Catherine Mangum ◽  
Kristopher Attwood ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emmanuel M. Gabriel ◽  
Minhyung Kim ◽  
Daniel T. Fisher ◽  
Catherine Mangum ◽  
Kristopher Attwood ◽  
...  

AbstractAberrancies in the tumor microvasculature limit the systemic delivery of anticancer agents, which impedes tumor response. Using human intravital microscopy (HIVM), we hypothesized that HIVM would be feasible in patients with peritoneal carcinomatosis (PC). During cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for PC, HIVM was performed in both tumor and non-tumor areas. The primary outcome was HIVM feasibility to measure vessel characteristics. We secondarily evaluated associations between HIVM vessel characteristics and oncologic outcomes (RECIST response to neoadjuvant therapy and disease-specific survival). Thirty patients with PC were enrolled. Nineteen patients (63.3%) received neoadjuvant therapy. HIVM was feasible in all patients. Compared to non-tumor (control) areas, PC areas had a lower density of functional vessels, higher proportion of non-functional vessels, smaller lumenal diameters, and lower blood flow velocity. Qualitative differences in these vessel characteristics were observed among patients who had partial response, stable disease, or progressive disease after receiving neoadjuvant therapy. However, no statistically significant relationships were found between HIVM vessel characteristics and oncologic outcomes. These novel findings comprise the first-in-human, real-time evidence of the microscopic differences between normal and tumor-associated vessels and form the basis for our larger, ongoing clinical trial appropriately powered to determine the clinical utility of HIVM (NCT03823144).



2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yue Liu ◽  
Zongjin Li

AbstractAcute kidney injury (AKI) is a common clinical symptom, which is mainly manifested by elevated serum creatinine and blood urea nitrogen levels. When AKI is not repaired in time, the patient is prone to develop chronic kidney disease (CKD). The kidney is composed of more than 30 different cells, and its structure is complex. It is extremely challenging to understand the lineage relationships and cell fate of these cells in the process of kidney injury and regeneration. Since the 20th century, lineage tracing technology has provided an important mean for studying organ development, tissue damage repair, and the differentiation and fate of single cells. However, traditional lineage tracing methods rely on sacrificing animals to make tissue slices and then take snapshots with conventional imaging tools to obtain interesting information. This method cannot achieve dynamic and continuous monitoring of cell actions on living animals. As a kind of intravital microscopy (IVM), two-photon microscopy (TPM) has successfully solved the above problems. Because TPM has the ability to penetrate deep tissues and can achieve imaging at the single cell level, lineage tracing technology with TPM is gradually becoming popular. In this review, we provided the key technical elements of lineage tracing, and how to use intravital imaging technology to visualize and quantify the fate of renal cells.



Sign in / Sign up

Export Citation Format

Share Document