Polyphasic phenotypic and genetic analysis reveals clonal nature of Xanthomonas axonopodis pv. punicae causing pomegranate bacterial blight

2019 ◽  
Vol 69 (2) ◽  
pp. 347-359 ◽  
Author(s):  
A. Kumar ◽  
J. Sharma ◽  
V. Munjal ◽  
K. Sakthivel ◽  
S. K. Thalor ◽  
...  



2013 ◽  
Vol 14 (1) ◽  
pp. 41 ◽  
Author(s):  
Y. He ◽  
G. P. Munkvold

Xanthomonas axonopodis pv. phaseoli (Smith) Vauterin (Xap) and Xanthomonas fuscans subsp. fuscans Schaad et al. (Xff) cause indistinguishable symptoms known as common bacterial blight of bean (Phaseolus vulgaris L.). These results confirm a higher disease incidence and seed transmission frequency of Xff compared to Xap and reinforce the need for seed health tests that can differentiate the two species. Accepted for publication 21 August 2013. Published 23 September 2013.



2019 ◽  
Vol 8 (16) ◽  
Author(s):  
Yane F. Neves ◽  
Samuel A. Santos ◽  
Lúcio M. S. Guimarães ◽  
Pedro M. P. Vidigal ◽  
Jorge L. Badel ◽  
...  

Here, we report the annotated draft genome sequence of Xanthomonas axonopodis pv. eucalyptorum pathotype strain LPF602 (synonym Xanthomonas axonopodis BSC45a), isolated from eucalypt leaves showing bacterial blight symptoms in Brazil. The availability of these genomic data will help improve the understanding of the evolution and molecular mechanisms involved in the pathogenesis of this microorganism.



Genome ◽  
2001 ◽  
Vol 44 (6) ◽  
pp. 1046-1056 ◽  
Author(s):  
B Tar'an ◽  
T E Michaels ◽  
K P Pauls

The objectives of the present study were to evaluate the field effects of Xanthomonas axonopodis pv. phaseoli (Xap), which causes common bacterial blight (CBB) on common bean (Phaseolus vulgaris L.), and to identify genetic factors for resistance to CBB using a linkage map constructed with random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), simple sequence repeat (SSR), and amplified fragment length polymorphism (AFLP) markers. One hundred and forty-two F2:4 lines, derived from a cross between 'OAC Seaforth' and 'OAC 95-4', and the parents were evaluated for their field reaction to CBB. In the inoculated plots, the reaction to CBB was negatively correlated with seed yield, days to maturity, plant height, hypocotyl diameter, pods per plant, and harvest index. A reduction in seed yield and its components was observed when disease-free and CBB-inoculated plots were compared. The broad-sense heritability estimate of the reaction to CBB was 0.74. The disease segregation ratio was not significantly different from the expected segregation ratio for a single locus in an F2 generation. The major gene for CBB resistance was localized on linkage group (LG) G5. A simple interval mapping procedure identified three genomic regions associated with the reaction to CBB. One quantitative trait loci (QTL), each on LG G2 (BNG71DraI), G3 (BNG21EcoRV), and G5 (PHVPVPK-1) explained 36.3%, 10.2%, and 42.2% of the phenotypic variation for the reaction to CBB, respectively. Together, these loci explained 68.4% of the phenotypic variation. The relative positions of these QTL on the core common bean map and their comparison with the previous QTL for CBB resistance are discussed.Key words: common bean, molecular markers, common bacterial blight.



2004 ◽  
Vol 94 (10) ◽  
pp. 1084-1093 ◽  
Author(s):  
K. Wydra ◽  
V. Zinsou ◽  
V. Jorge ◽  
V. Verdier

Cassava suffers from bacterial blight attack in all growing regions. Control by resistance is unstable due to high genotype-environment interactions. Identifying genes for resistance to African strains of Xanthomonas axonopodis pv. manihotis can support breeding efforts. Five F1 cassava genotypes deriving from the male parent ‘CM2177-2’ and the female parent ‘TMS30572’ were used to produce 111 individuals by backcrossing to the female parent. In all, 16 genotypes among the mapping population were resistant to stem inoculation by four strains of X. axonopodis pv. manihotis from different locations in Africa, and 19 groups with differential reactions to the four strains were identified, suggesting that the strains represent different pathotypes. Four genotypes were resistant to leaf inoculation, and three were resistant to both stem and leaf inoculations. Genotypes with susceptible, moderately resistant, and resistant reactions after leaf and stem inoculation partly differed in their reactions on leaves and stems. Based on the genetic map of cassava, single-markeranalysis of disease severity after stem-puncture inoculation was performed. Eleven markers were identified, explaining between 16 and 33.3% of phenotypic variance of area under disease progress curve. Five markers on three and one linkage groups from the female- and male-derived framework of family CM8820, respectively, seem to be weakly associated with resistance to four strains of X. axonopodis pv. manihotis. Based on the segregation of alleles from the female of family CM8873, one marker was significantly associated with resistance to two X. axonopodis pv. manihotis strains, GSPB2506 and GSPB2511, whereas five markers were not linked to any linkage group. The quantitative trait loci (QTL) mapping results also suggest that the four African strains belong to four different pathotypes. The identified pathotypes should be useful for screening for resistance, and the QTL and markers will support breeding for resistance.





Sign in / Sign up

Export Citation Format

Share Document