Clostridium bifermentans and C. subterminale are associated with kiwifruit vine decline, known as moria , in Italy

2020 ◽  
Vol 69 (4) ◽  
pp. 765-774 ◽  
Author(s):  
Patrizia Spigaglia ◽  
Fabrizio Barbanti ◽  
Fabio Marocchi ◽  
Marco Mastroleo ◽  
Marco Baretta ◽  
...  
Author(s):  
Alessandro Infantino ◽  
Virgilio Balmas ◽  
Nicola Schianchi ◽  
Stefano Mocali ◽  
Carolina Chiellini ◽  
...  
Keyword(s):  
Root Rot ◽  

2015 ◽  
Vol 16 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Chandrasekar S. Kousik ◽  
Scott Adkins ◽  
Craig G. Webster ◽  
William W. Turechek ◽  
Philip Stansly ◽  
...  

Watermelon vine decline (WVD) caused by the whitefly-transmitted Squash vein yellowing virus (SqVYV) has been a serious limiting factor in watermelon production in southwest and west-central Florida over the past few years. Symptoms of WVD typically appear as sudden decline of vines a few weeks before harvest or just after the first harvest. Fruit symptoms include rind necrosis and flesh discoloration that affects fruit quality and marketability. The combination of insecticide treatments consisting of an imidacloprid drench (Admire Pro, 560 ml/ha) at transplanting followed by two foliar applications of spiromesifen (Oberon, 2SC, 490 ml/ha) and reflective plastic mulch was evaluated for management of WVD during fall growing seasons of 2006, 2007, and 2009. Virus inoculum source was introduced by planting SqVYV-infected squash plants at the ends of each plot. In all three experiments, the insecticide-treated plots had significantly lower levels of WVD on foliage and fruit compared to non-treated plots. In 2007, the reflective plastic mulch was effective in reducing foliar WVD compared to non-reflective mulch, but not in 2006 and 2009. No significant interaction between plastic mulch and chemical treatments was observed on WVD development on foliage or fruit. Our results suggest that application of insecticides for managing whiteflies can help manage SqVYV-caused WVD. Accepted for publication 13 January 2015. Published 25 March 2015.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1068-1068 ◽  
Author(s):  
Y. I. Chew-Madinaveitia ◽  
A. Gaytán-Mascorro ◽  
T. Herrera-Pérez

In 2009, 2010, and 2011, melon plants (Cucumis melo L.) exhibited vine decline in commercial fields in the Municipality of Viesca, State of Coahuila, in the north-central region of Mexico known as La Comarca Lagunera. Symptoms included wilting, leaf yellowing, and vine collapse prior to harvest. Diseased plants showed necrotic root lesions and loss of secondary and tertiary roots. Numerous perithecia containing asci and ascospores typical of Monosporascus cannonballus Pollack & Uecker (3) were found in the root system. M. cannonballus is a typical fungus of hot semiarid climates such as La Comarca Lagunera in which daytime temperatures above 40°C are frequent during the melon growing season. Small root pieces were disinfected with 1.5% sodium hypochlorite for 1 min and plated onto potato dextrose agar (PDA) medium with 0.5 g l–1 streptomycin sulfate and incubated for 7 days at 25°C under dark conditions. The mycelium of the fungus colony was initially white, turning gray about 3 weeks later and yielding black perithecia with one ascospore per asci. The internal transcribed spacer region of ribosomal DNA of isolate 4 was sequenced and submitted to GenBank with Accession No. JQ51935. Pathogenicity of this isolate was confirmed on melon plants (cv. Cruiser) in the greenhouse at 25 to 32°C. Fungus inoculum was produced in a sand-oat hull medium (0.5 l of sand, 45 g of oat hulls, and 100 ml of distilled water), and incubated at 25°C for 50 days (1). Melon seeds were sown in sterile sand in 20-cm diameter and 12-cm depth polyurethane containers, and the inoculum was added to produce a concentration of 20 CFU g–1. Sowing was done in five inoculated containers and thinned to two plants per container, each container representing a replication. Plants were also grown in five noninoculated containers that were used as controls. After 50 days under greenhouse conditions, plants were evaluated for disease symptoms. Melon plants inoculated with M. cannonballus exhibited root necrosis as opposed to healthy roots observed in noninoculated plants. M. cannonballus was reisolated from symptomatic plants, confirming Koch's postulates. M. cannonballus causes root rot and vine decline on melon and has been reported in Brazil, Guatemala, Honduras, India, Iran, Israel, Italy, Japan, Libya, the Netherlands (plants from Russia), Pakistan, Saudi Arabia, Spain, Taiwan, Tunisia, and the United States. M. cannonballus was reported in 1996 in southeastern Mexico in the State of Colima, where watermelon (Citrullus lanatus (Thunb.) Matsum.& Nakai) showed wilting and plant collapse prior to harvest (2). However, to our knowledge, this is the first report of M. cannonballus on melon in Mexico. This is relevant because La Comarca Lagunera region is one of the major melon producing areas in Mexico and M. cannonballus is a pathogen that may cause yield losses of up to 100%. References: (1) B. D. Bruton et al. Plant Dis. 84:907, 2000. (2) R. D. Martyn et al. Plant Dis. 80:1430, 1996. (3) F. G. Pollack and F. A. Uecker. Mycologia 66:346, 1974.


2011 ◽  
Vol 101 (9) ◽  
pp. 1081-1090 ◽  
Author(s):  
Yu Zhang ◽  
Kashmir Singh ◽  
Ravneet Kaur ◽  
Wenping Qiu

A severe vein-clearing and vine decline syndrome has emerged on grapevines (Vitis vinifera) and hybrid grape cultivars in the Midwest region of the United States. The typical symptoms are translucent vein-clearing on young leaves, short internodes and decline of vine vigor. Known viral pathogens of grapevines were not closely associated with the syndrome. To obtain a comprehensive profile of viruses in a diseased grapevine, small RNAs were enriched and two cDNA libraries were constructed from a symptomatic grapevine and a symptomless grapevine, respectively. Deep sequencing of the two cDNA libraries showed that the most abundant viral small RNAs align with the genomes of viruses in the genus Badnavirus, the family Caulimoviridae. Amplification of the viral DNA by polymerase chain reaction allowed the assembly of the whole genome sequence of a grapevine DNA virus, which shared the highest homology with the Badnavirus sequences. This is the first report of a DNA virus in grapevines. The new DNA virus is closely associated with the vein-clearing symptom, and thus has been given a provisional name Grapevine vein clearing virus (GVCV). GVCV was detected in six grapevine cultivars showing vein-clearing and vine decline syndrome in Missouri, Illinois, and Indiana, suggesting its wide distribution in the Midwest region of the United States. Discovery of DNA viruses in grapevines merits further studies on their epidemics and economic impact on grape production worldwide.


Sign in / Sign up

Export Citation Format

Share Document