The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum

2019 ◽  
Vol 168 (1) ◽  
pp. 98-117 ◽  
Author(s):  
Yong‐Feng Gao ◽  
Ji‐Kai Liu ◽  
Feng‐Ming Yang ◽  
Guo‐Yan Zhang ◽  
Dan Wang ◽  
...  
2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


2017 ◽  
Vol 8 ◽  
Author(s):  
Imène Hichri ◽  
Yordan Muhovski ◽  
Eva Žižková ◽  
Petre I. Dobrev ◽  
Emna Gharbi ◽  
...  

2018 ◽  
Vol 13 (1) ◽  
pp. 431-445 ◽  
Author(s):  
Wei Tang ◽  
Caroline Luo

AbstractThe purpose of the present investigation is to examine the function of the C2H2-type zinc finger transcription factor of Arabidopsis thaliana 6 (ZAT6) in salt stress tolerance in cells of rice (Oryza sativa L.), cotton (Gossypium hirsutum L.) and slash pine (Pinus elliottii Engelm.). Cells of O. sativa, G. hirsutum, and P. elliottii overexpressing ZAT6 were generated using Agrobacterium-mediated genetic transformation. Molecular and functional analysis of transgenic cell lines demonstrate that overexpression of ZAT6 increased tolerance to salt stress by decreasing lipid peroxidation and increasing the content of abscisic acid (ABA) and GA8, as well as enhancing the activities of antioxidant enzymes such as ascorbate peroxidise (APOX), catalase (CAT), glutathione reductase (GR), and superoxide dismutase (SOD). In rice cells, ZAT6 also increased expression of Ca2+-dependent protein kinase genes OsCPK9 and OsCPK25 by 5–7 fold under NaCl stress. Altogether, our results suggest that overexpression of ZAT6 enhanced salt stress tolerance by increasing antioxidant enzyme activity, hormone content and expression of Ca2+-dependent protein kinase in transgenic cell lines of different plant species.


Sign in / Sign up

Export Citation Format

Share Document