Regeneration Potential of Floodplain Forests Under the Influence of Nonnative Tree Species: Soil Seed Bank Analysis in Northern Italy

2013 ◽  
Vol 22 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Sandra Skowronek ◽  
André Terwei ◽  
Stefan Zerbe ◽  
Inga Mölder ◽  
Peter Annighöfer ◽  
...  
FLORESTA ◽  
2011 ◽  
Vol 41 (2) ◽  
Author(s):  
Marcelo Lima de Souza ◽  
Antônio Carlos Nogueira ◽  
Renato Luiz Grisi Macedo ◽  
Carlos Roberto Sanquetta ◽  
Nelson Venturin

O objetivo do presente trabalho foi estudar o banco de sementes no solo de um fragmento florestal com Araucaria angustifolia (Bert.) O. Ktze. no estado do Paraná. Para isso, investigou-se a distribuição vertical das sementes, a influência do sombreamento sobre a emergência das plântulas, sua identificação e quantificação. A distribuição vertical de sementes em quatro camadas foi analisada através da identificação e quantificação das plântulas emergentes em casa de vegetação, levando em consideração o nível de sombreamento. Os dados referentes ao banco de sementes foram obtidos no período de 210 dias, por meio de identificação botânica e contagens semanais das plântulas germinadas das quatro profundidades de solo em quatro parcelas experimentais. As amostras foram colocadas para germinar sob 0 e 50% de sombreamento em casa de vegetação. Os resultados obtidos no estudo de banco de sementes permitiram as seguintes conclusões: o banco de sementes parece ser pobre em espécies arbóreas e abundante em espécies herbáceas; o banco de sementes das espécies arbóreas foi maior na segunda camada; ocorreu maior germinação sob 0% de sombreamento. Provavelmente, a estratégia de regeneração da maioria das espécies presentes nessa área de estudo parece não ser pelo banco de sementes no solo.Palavras-chave: Banco de sementes no solo; Araucaria angustifolia; fragmento florestal. AbstractSoil seed bank analysis in a forest fragment with Araucaria angustifolia, State of Parana. A research on soil seed bank had been developed in an Araucaria angustifolia (Bert.) O. Ktze. forest fragment in the State of Paraná. It had surveyed vertical distribution of seeds within the soil and shadow influence on seedling emergence, besides the improvement of their identification and quantity measuring. Vertical distribution of seeds in four soil layers had been analyzed by identification and quantification of germinated seedlings in greenhouse, with full light or 50% shaded conditions. Data related to seedlings of trees, weeds, grasses and lianas were calculated separately in weekly intervals during a 210-day period. Results suggested that the soil seed bank in this forest was poor in relation to tree species, in diversity as far as density. On the other hand, seeds of grasses and weeds decreased along vertical soil profile, and forest tree species tended to abundance in the 5-10 cm layer. Germination was higher with full light than in 50% shaded conditions. Probably, regeneration strategy for most species in this focused area doesn’t seem to be soil seed bank.Keywords: Soil seed bank; Araucaria angustifolia; forest fragment.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1391
Author(s):  
Anussara Chalermsri ◽  
La-aw Ampornpan ◽  
Witoon Purahong

Human activity negatively affects the sustainability of forest ecosystems globally. Disturbed forests may or may not recover by themselves in a certain period of time. However, it is still unclear as to what parameters can be used to reasonably predict the potential for self-recovery of human-disturbed forests. Here, we combined seed rain, soil seed bank, and seed emergence experiments to evaluate the potential for self-recovery of a highly disturbed, tropical, mixed deciduous forest in northeastern Thailand. Our results show a limited potential for self-recovery of this forest due to low seedling input and storage and an extremely high mortality rate during the drought period. There were 15 tree species of seedlings present during the regeneration period in comparison with a total number of 56 tree species in current standing vegetation. During the dry season, only four tree seedling species survived, and the highest mortality rate reached 83.87%. We also found that the correspondence between the combined number of species and composition of plant communities obtained from seed rain, soil seed bank, and seedling emergence experiments and the standing vegetation was poor. We clearly show the temporal dynamics of the seed rain and seedling communities, which are driven by different plant reproductive phenology and dispersal mechanisms, and drought coupled with mortality. We conclude that this highly disturbed forest needs a management plan and could not recover by itself in a short period of time. We recommend the use of external seed and seedling supplies and the maintenance of soil water content (i.e., shading) during periods of drought in order to help increase seedling abundances and species richness, and to reduce the mortality rate.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 223
Author(s):  
Simona Maccherini ◽  
Elisa Santi ◽  
Dino Torri

Seed banks are important for understanding vegetation dynamics and habitat regeneration potential. Biancana badlands are vanishing landscapes where recurring and non-recurring management has been advocated to restore vegetation. Here, we investigated germinable seed bank structure and composition of a biancana badland in central Italy and evaluated the relationship between the standing vegetation and soil seed bank. We identified four land cover classes in five biancana badlands of Tuscany (central Italy) and collected data from 132 vegetation plots and 660 soil cores. We recorded 117 species in the standing vegetation. The seedlings that emerged from the soil samples, mostly annual species, numbered 183 and belonged to 31 taxa (392.5 seedlings/m−2 on average across the four land cover classes). Standing vegetation showed an aggregated spatial pattern with distinct communities while the seed bank showed a less aggregated spatial pattern. The similarity between the seed bank and standing vegetation was low. In contrast with the features generally found for disturbed and pioneer communities, but in line with seed bank characteristics of other badlands, the seed bank was particularly poor in species.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1538
Author(s):  
Jun Wang ◽  
Yao Huang ◽  
Qinfeng Guo ◽  
Long Yang ◽  
Hongfang Lu ◽  
...  

Increased nitrogen (N) deposition may have profound effects on forest ecosystems. However, information on the impacts of elevated N deposition on belowground soil seed bank in forests is lacking. In a field experiment, we added N at 50 and 25 kg N ha−1 year−1 to the canopy (CAN50 and CAN25) and to the understory (UAN50 and UAN25), to determine the effects of N deposition on soil seed bank structure and composition in a subtropical evergreen broadleaved forest. A total of 1545 seedlings belonging to 37 species emerged from the 10 cm-depth soil samples. After 6 years of N addition, soil seed bank density significantly increased at the depth of 0–10 cm under CAN50 treatment relative to the control. N addition did not significantly affect species richness, the Simpson index, Shannon–Wiener index, or Pielou index of the soil seed banks. Seed bank density and species richness were positively correlated with soil organic matter content. For the whole 0–10 cm soil layer, the percentage of total seed abundance and total species richness represented by tree species among the N-addition treatments was ≤9.3% and ≤16.1%, respectively. Soil seed bank composition was similar among UAN25, UAN50, and the control, but canopy N addition and especially CAN50 altered the species composition of the seed bank. Overall, our results indicate that artificial canopy N deposition at 50 kg N ha−1 year−1 but not understory N addition tends to promote seed storage and to change species composition in the soil seed bank. Because of the dominance of shrubs and herbs in the soil seed bank, the potential to regenerate tree species from the soil seed bank is limited in the subtropical evergreen broadleaved forest.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdullah Al Mamun ◽  
Mohammed Kamal Hossain ◽  
Md. Akhter Hossain

PurposeIn this paper, the authors show that ecological restoration potential through natural regeneration of degraded tropical rainforest is possible. This is significant because at present most of the tropical forest of the world, including of Bangladesh, are degraded.Design/methodology/approachRegeneration status of Chunati Wildlife Sanctuary (CWS) was assessed through stratified random sampling method using sample plots of 5 × 5 m in size covering 269 sample plots.FindingsA total of 3,256 regenerating seedlings/saplings of 105 species belonging to 35 families were recorded from CWS. From regenerating tree species, maximum (37.83) family importance value (FIV) index was found for Euphorbiaceae followed by Myrtaceae (18.03). Maximum importance value index (IVI) was found for Aporosa wallichii (21.62) followed by Grewia nervosa (16.41). Distribution of seedlings into different height classes of regenerating tree species was also calculated.Practical implicationsForest scientists are working to find out the best nature-based solution for ecological restoration of tropical rainforests to attain climate resilient ecosystem in a sustainable way. Tropical rain forest has huge plant diversity, and we find that ecological restoration is possible through natural regeneration from its rich soil seed bank. Natural regeneration is the best nature-based solution for sustainable management of the forest.Social implicationsThe authors believe that the findings presented in our paper will appeal to the forest and environmental scientists. The findings will allow readers to understand degraded tropical hill forest ecosystem and its management strategy.Originality/value The authors believe that this manuscript will give a clear picture about degraded tropical hill forest ecosystem and its genetic composition, diversity and soil seed bank status to apply appropriate management strategy.


2012 ◽  
Vol 131 (5) ◽  
pp. 1619-1635 ◽  
Author(s):  
Peter Annighöfer ◽  
Inga Mölder ◽  
Stefan Zerbe ◽  
Heike Kawaletz ◽  
André Terwei ◽  
...  

2018 ◽  
Vol 41 (3) ◽  
Author(s):  
João Juares Soares ◽  
Sabrina Ferreira Laurito

ABSTRACT Soil seed banks are the first source of seeds for regeneration after a forest’s disturbance. The present study aims to verify the regeneration potential of the soil seed bank of a Seasonal Semidecidual Forest remnant. The study was carried out at Canchim Farm, CPPSE - Embrapa (São Paulo State, Brazil). Soil samples were collected from the fragment in both the wet and dry seasons. An average of 307.8 seedlings/m2 was found in the dry season and an average of 144 seedlings/m2 was found in the dry station. Twenty six species of trees with viable seeds were found in the soil, mostly pioneer species; among them, Cecropia glaziovi Snethlage was the most abundant pioneer species. The soil seed bank can be considered of great potential for regeneration due to the presence of pioneers, secondary and later species.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 123 ◽  
Author(s):  
Qiaoling Yan ◽  
Qun Gang ◽  
Jiaojun Zhu

Secondary forests have become the major forest type worldwide, and are experiencing various disturbances and exhibiting obvious vegetation degradation (e.g., reduced biodiversity and decreased productivity) compared with primary forests. Forest gap is a common small-scale disturbance in secondary forests. Promoting natural regeneration under gap disturbance is an important approach to recover biodiversity and ecosystem services for temperate secondary forests. The gap size is the crucial characteristic controlling natural regeneration of many tree species. However, little is known about the spatiotemporal pattern of seed rain for gravity-dispersed and wind-dispersed tree species in gaps of varying sizes. The objectives of this study were to determine how seed rain of dominant tree species depend on gap size, and consequently, to explore some gap-based silviculture solutions for restoring secondary forests from the view of seed dispersal. The spatial distribution of seed rain in gaps with three sizes (large gaps of 250–350 m2, medium gaps of 150–250 m2, and small gaps of < 150 m2), the temporal dynamics of seed rain over three years, and the relationship between seed rain and soil seed banks were explored in temperate secondary forests. The results showed that more than 90% of the seeds in seed rain were wind-dispersed, and their seed rain density and the contribution of seed rain to soil seed bank in medium gaps reached the highest (p = 0.03). The results suggest that establishing medium-sized gaps (i.e., gap size with 150–250 m2) in the secondary forests is more favorable for improving the natural regeneration potential (arrival of seeds and forming soil seed bank) of gap-dependent and wind-dispersed species (e.g., Acer mono) in gaps.


Sign in / Sign up

Export Citation Format

Share Document