scholarly journals Seed Rain, Soil Seed Bank, and Seedling Emergence Indicate Limited Potential for Self-Recovery in a Highly Disturbed, Tropical, Mixed Deciduous Forest

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1391
Author(s):  
Anussara Chalermsri ◽  
La-aw Ampornpan ◽  
Witoon Purahong

Human activity negatively affects the sustainability of forest ecosystems globally. Disturbed forests may or may not recover by themselves in a certain period of time. However, it is still unclear as to what parameters can be used to reasonably predict the potential for self-recovery of human-disturbed forests. Here, we combined seed rain, soil seed bank, and seed emergence experiments to evaluate the potential for self-recovery of a highly disturbed, tropical, mixed deciduous forest in northeastern Thailand. Our results show a limited potential for self-recovery of this forest due to low seedling input and storage and an extremely high mortality rate during the drought period. There were 15 tree species of seedlings present during the regeneration period in comparison with a total number of 56 tree species in current standing vegetation. During the dry season, only four tree seedling species survived, and the highest mortality rate reached 83.87%. We also found that the correspondence between the combined number of species and composition of plant communities obtained from seed rain, soil seed bank, and seedling emergence experiments and the standing vegetation was poor. We clearly show the temporal dynamics of the seed rain and seedling communities, which are driven by different plant reproductive phenology and dispersal mechanisms, and drought coupled with mortality. We conclude that this highly disturbed forest needs a management plan and could not recover by itself in a short period of time. We recommend the use of external seed and seedling supplies and the maintenance of soil water content (i.e., shading) during periods of drought in order to help increase seedling abundances and species richness, and to reduce the mortality rate.

FLORESTA ◽  
2011 ◽  
Vol 41 (2) ◽  
Author(s):  
Marcelo Lima de Souza ◽  
Antônio Carlos Nogueira ◽  
Renato Luiz Grisi Macedo ◽  
Carlos Roberto Sanquetta ◽  
Nelson Venturin

O objetivo do presente trabalho foi estudar o banco de sementes no solo de um fragmento florestal com Araucaria angustifolia (Bert.) O. Ktze. no estado do Paraná. Para isso, investigou-se a distribuição vertical das sementes, a influência do sombreamento sobre a emergência das plântulas, sua identificação e quantificação. A distribuição vertical de sementes em quatro camadas foi analisada através da identificação e quantificação das plântulas emergentes em casa de vegetação, levando em consideração o nível de sombreamento. Os dados referentes ao banco de sementes foram obtidos no período de 210 dias, por meio de identificação botânica e contagens semanais das plântulas germinadas das quatro profundidades de solo em quatro parcelas experimentais. As amostras foram colocadas para germinar sob 0 e 50% de sombreamento em casa de vegetação. Os resultados obtidos no estudo de banco de sementes permitiram as seguintes conclusões: o banco de sementes parece ser pobre em espécies arbóreas e abundante em espécies herbáceas; o banco de sementes das espécies arbóreas foi maior na segunda camada; ocorreu maior germinação sob 0% de sombreamento. Provavelmente, a estratégia de regeneração da maioria das espécies presentes nessa área de estudo parece não ser pelo banco de sementes no solo.Palavras-chave: Banco de sementes no solo; Araucaria angustifolia; fragmento florestal. AbstractSoil seed bank analysis in a forest fragment with Araucaria angustifolia, State of Parana. A research on soil seed bank had been developed in an Araucaria angustifolia (Bert.) O. Ktze. forest fragment in the State of Paraná. It had surveyed vertical distribution of seeds within the soil and shadow influence on seedling emergence, besides the improvement of their identification and quantity measuring. Vertical distribution of seeds in four soil layers had been analyzed by identification and quantification of germinated seedlings in greenhouse, with full light or 50% shaded conditions. Data related to seedlings of trees, weeds, grasses and lianas were calculated separately in weekly intervals during a 210-day period. Results suggested that the soil seed bank in this forest was poor in relation to tree species, in diversity as far as density. On the other hand, seeds of grasses and weeds decreased along vertical soil profile, and forest tree species tended to abundance in the 5-10 cm layer. Germination was higher with full light than in 50% shaded conditions. Probably, regeneration strategy for most species in this focused area doesn’t seem to be soil seed bank.Keywords: Soil seed bank; Araucaria angustifolia; forest fragment.


2012 ◽  
Vol 42 (12) ◽  
pp. 2090-2105 ◽  
Author(s):  
Elizabeth J. Farnsworth ◽  
Audrey A. Barker Plotkin ◽  
Aaron M. Ellison

Profound changes are occurring in forests as native insects, nonnative insects, or pathogens irrupt on foundation tree species; comprehensive models of vegetation responses are needed to predict future forest composition. We experimentally simulated hemlock woolly adelgid ( Adelges tsugae Annand) infestation (by girdling trees) and preemptive logging of eastern hemlock ( Tsuga canadensis (L.) Carrière) and compared vegetation dynamics in replicate 90 m × 90 m treatment plots and intact hemlock stands from 2004 to 2010. Using Chao–Sørensen abundance-based similarity indices, we assessed compositional similarities of trees, shrubs, forbs, and graminoids among the seed bank, seed rain, and standing vegetation over time and among treatments. Post-treatment seed rain, similar among treatments, closely reflected canopy tree composition. Species richness of the seed bank was similar in 2004 and 2010. Standing vegetation in the hemlock controls remained dissimilar from the seed bank, reflecting suppressed germination. Recruits from the seed rain and seed bank dominated standing vegetation in the logged treatment, whereas regeneration of vegetation from the seed bank and seed rain was slowed due to shading by dying hemlocks in the girdled treatment. Our approach uniquely integrates multiple regeneration components through time and provides a method for predicting forest dynamics following loss of foundation tree species.


2016 ◽  
Vol 8 (1) ◽  
pp. 118-124
Author(s):  
Omowumi Omotoyosi OLALOYE ◽  
Samson Olajide OKE

The present study was conducted to determine the densities and soil seed bank composition of a riparian forest and its adjacent upland vegetation for a better understanding the potentials of the soil seed banks in facilitating succession towards a more natural forest of native tree species. Three contiguous 20 m x 20 m plots were systematically established on both riparian forest and upland vegetation. Species enumeration, identification and distribution into families of the standing vegetation were carried out. Furthermore, five replicates soil samples were collected at two different depths (0-15 cm, 15-30 .The seedling emergence test was carried out for six months in the greenhouse to determine the species composition and the density of the seed in both vegetation types. The results of the seedling emergence revealed that more seeds were deposited at the upper depth (0-15 cm) than the lower depth 15-30 cm in the two vegetation types in both dry and rainy season. There was low similarity in species composition between the standing vegetation and soil seed bank in each of the two vegetation types. Herbaceous species recorded the highest number of seedlings as compared to the other habit. The low similarity between seed bank and standing vegetation of the riparian forest and the adjacent upland vegetation suggested that soil seed bank was insignificant in their restoration. 


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 123 ◽  
Author(s):  
Qiaoling Yan ◽  
Qun Gang ◽  
Jiaojun Zhu

Secondary forests have become the major forest type worldwide, and are experiencing various disturbances and exhibiting obvious vegetation degradation (e.g., reduced biodiversity and decreased productivity) compared with primary forests. Forest gap is a common small-scale disturbance in secondary forests. Promoting natural regeneration under gap disturbance is an important approach to recover biodiversity and ecosystem services for temperate secondary forests. The gap size is the crucial characteristic controlling natural regeneration of many tree species. However, little is known about the spatiotemporal pattern of seed rain for gravity-dispersed and wind-dispersed tree species in gaps of varying sizes. The objectives of this study were to determine how seed rain of dominant tree species depend on gap size, and consequently, to explore some gap-based silviculture solutions for restoring secondary forests from the view of seed dispersal. The spatial distribution of seed rain in gaps with three sizes (large gaps of 250–350 m2, medium gaps of 150–250 m2, and small gaps of < 150 m2), the temporal dynamics of seed rain over three years, and the relationship between seed rain and soil seed banks were explored in temperate secondary forests. The results showed that more than 90% of the seeds in seed rain were wind-dispersed, and their seed rain density and the contribution of seed rain to soil seed bank in medium gaps reached the highest (p = 0.03). The results suggest that establishing medium-sized gaps (i.e., gap size with 150–250 m2) in the secondary forests is more favorable for improving the natural regeneration potential (arrival of seeds and forming soil seed bank) of gap-dependent and wind-dispersed species (e.g., Acer mono) in gaps.


2019 ◽  
Vol 35 (4) ◽  
pp. 173-184 ◽  
Author(s):  
Fernanda Melo Gomes ◽  
Clemir Candeia de Oliveira ◽  
Roberta da Rocha Miranda ◽  
Rafael Carvalho da Costa ◽  
Maria Iracema Bezerra Loiola

AbstractTo better understand the role of seed banks in ecological succession of dry forests, we compared similarities between vegetation and seed banks and assessed the relative contributions of seed dispersal and persistence in chronosequences in the Brazilian semi-arid region. To sample the standing vegetation and the seed bank, we collected data in three sites with three successional ages in each one (5 y, 25 y and 45 y). A total of 180 soil samples (three sites × three successional ages × 10 plots × two components) were collected. The composition of the seed bank was assessed by the seedling emergence method. Of 166 species identified in the standing vegetation, only 50 (30.1%) were also present in the seed bank, resulting in low similarity (Jaccard index = 0.02–0.21) and reflecting the rarity of woody species and the dominance of annuals (71% of richness). The relative importance of seed persistence and seed dispersal to seed banks composition were balanced in most cases (difference was not rejected in four out six comparisons). Those results suggest that seed banks in tropical dry forests are largely the result of high dispersal rates and the persistence of allochthonous annual species that contribute to decoupling seed bank and vegetation composition.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 500
Author(s):  
Zong Zhao ◽  
Yong Liu ◽  
Hongyan Jia ◽  
Wensheng Sun ◽  
Angang Ming ◽  
...  

Objective: To investigate the impact of different slope directions on the quantity and quality of the soil seed bank and seedling germination process of Castanopsis hystrix plantations. Method: Fixed sample plots in forest stands of Castanopsis hystrix were established on different slope directions (sunny slope, semi-sunny slope, semi-shady slope, and shady slope). The characteristics of the forest stand were investigated, and per-wood scaling was carried out. The temporal dynamics of the seed rain and seed bank were quantified using seed rain collectors and by collecting soil samples from different depths. The quantity and quality of the seeds were determined, and the vigor of mature seeds was measured throughout the study. Results: (1) The diffusion of Castanopsis hystrix seed rain started in mid-September, reached its peak from late October to early November, and ended in mid-December. (2) The dissemination process, occurrence time, and composition of the seed rain varied between the different slope directions. The seed rain intensity on the semi-sunny slope was the highest (572.75 ± 9.50 grains∙m−2), followed by the sunny slope (515.60 ± 10.28 grains∙m−2), the semi-shady slope (382.13 ± 12.11 grains∙m−2), and finally the shady slope (208.00 ± 11.35 grains∙m−2). The seed rain on the sunny slope diffused earliest and lasted the longest, while the seed rain on the shady slope diffused latest and lasted the shortest time. Seed vigor and the proportion of mature seeds within the seed rain were greatest on the semi-sunny slope, followed by the sunny slope, semi-shady slope, and the shady slope. (3) From the end of the seed rain to August of the following year, the amount of total reserves of the soil seed banks was highest on the semi-sunny slope, followed by the sunny slope then the semi-shady slope, and it was the lowest on the shady slope. The amount of mature, immature, gnawed seeds and seed vigor of the soil seed bank in various slope directions showed a decreasing trend with time. The seeds of the seed bank in all slope directions were mainly distributed in the litter layer, followed by the 0–2 cm humus layer, and only a few seeds were present in the 2–5 cm soil layer. (4) The seedling density of Castanopsis hystrix differed significantly on the different slope directions. The semi-sunny slope had the most seedlings, followed by the sunny slope, semi-shady slope, and the shady slope. Conclusions: The environmental conditions of the semi-sunny slope were found to be most suitable for the seed germination and seedling growth of Castanopsis hystrix, and more conducive to the regeneration and restoration of its population.


2002 ◽  
Vol 50 (2) ◽  
pp. 197 ◽  
Author(s):  
Timothy J. Wills ◽  
Jennifer Read

Various fire-related agents, including heat, smoke, ash and charred wood, have been shown to break dormancy and promote germination of soil-stored seed in a broad range of species in mediterranean-type systems. However, relatively little work has been conducted in south-eastern Australian heathlands. This study examined the effects of heat and smoked water on germination of the soil seed bank in a mature sand heathland within the Gippsland Lakes Coastal Park, in south-eastern Australia. Heat was clearly the most successful treatment for promoting seed germination, followed by smoked water, then controls, with 55% of species present in the germinable soil seed bank requiring a heat or smoke stimulus to promote seed germination. Mean species richness of the germinable soil seed bank was found to be significantly higher in heat-treated soil than in smoke and control treatments. Seedling density of heat-treated soil was almost 10 times that of controls, while smoke-treated soil was almost five times that of controls. Seedling emergence was fastest in heat-treated soil, followed by smoke and control soils. Of the species found in the soil seed bank, 25% were absent from the extant vegetation, suggesting the existence of post-fire colonisers in the soil seed bank. The results have implications for the design of soil seed bank experiments and the use of fire as a tool in vegetation management.


Sign in / Sign up

Export Citation Format

Share Document