Hydrologic alterations impact plant litter decay rate and ecosystem resilience in Mojave wetlands

2019 ◽  
Vol 27 (5) ◽  
pp. 1094-1104 ◽  
Author(s):  
Stephanie Castle ◽  
Eliška Rejmánková ◽  
Janet Foley ◽  
Steve Parmenter
2016 ◽  
Author(s):  
Linda T.A. van Diepen ◽  
Serita D. Frey ◽  
Elizabeth A. Landis ◽  
Eric W. Morrison ◽  
Anne Pringle

AbstractSaprotrophic fungi are the primary decomposers of plant litter in temperate forests, and their activity is critical for carbon (C) and nitrogen (N) cycling. Simulated atmospheric N deposition is associated with reduced fungal biomass, shifts in fungal community structure, slowed litter decay, and soil C accumulation. Although rarely studied, N deposition may also result in novel selective pressures on fungi, affecting evolutionary trajectories. To directly test if long-term N enrichment reshapes fungal behaviors, we isolated decomposer fungi from a longterm (28 year) N addition experiment and used a common garden approach to compare growth rates and decay abilities of isolates from control and N amended plots. Both growth and decay were significantly altered by long-term exposure to N enrichment. Changes in growth rates were idiosyncratic, but litter decay by N isolates was generally lower compared to control isolates of the same species, a response not readily reversed when N isolates were grown in control (low N) environments. Changes in fungal behaviors accompany and perhaps drive previously observed N-induced shifts in fungal diversity, community composition, and litter decay dynamics.


1998 ◽  
Vol 76 (7) ◽  
pp. 1295-1304 ◽  
Author(s):  
David M Bryant ◽  
Elisabeth A Holland ◽  
Timothy R Seastedt ◽  
Marilyn D Walker

Decomposition of plant litter regulates nutrient cycling and transfers of fixed carbon to soil organic matter pools in terrestrial ecosystems. Climate, as well as factors of intrinsic litter chemistry, often govern the rate of decomposition and thus the dynamics of these processes. Initial concentrations of nitrogen and recalcitrant carbon compounds in plant litter are good predictors of litter decomposition rates in many systems. The effect of exogenous nitrogen availability on decay rates, however, is not well defined. Microclimate factors vary widely within alpine tundra sites, potentially affecting litter decay rates at the local scale. A controlled factorial experiment was performed to assess the influence of landscape position and exogenous nitrogen additions on decomposition of surface foliage and buried root litter in an alpine tundra in the Front Range of the Rocky Mountains in Colorado, U.S.A. Litter bags were placed in three communities representing a gradient of soil moisture and temperature. Ammonium nitrate was applied once every 30 days at a rate of 20 g N·m-2 during the 3-month growing season. Data, as part of the Long-Term Inter-site Decomposition Experiment Team project, were analyzed to ascertain the effects of intrinsic nitrogen and carbon fraction chemistry on litter decay in alpine systems. Soil moisture was found to be the primary controlling factor in surface litter mass loss. Root litter did not show significant mass loss following first growing season. Nitrogen additions had no effect on nitrogen retention, or decomposition, of surface or buried root litter compared with controls. The acid-insoluble carbon fraction was a good predictor of mass loss in surface litters, showing a strong negative correlation. Curiously, N concentration appeared to retard root decomposition, although degrees of freedom limit the confidence of this observation. Given the slow rate of decay and N loss from root litter, root biomass appears to be a long-term reservoir for C and N in the alpine tundra.Key words: litter decomposition, alpine tundra, nitrogen deposition, LIDET, Niwot Ridge.


2008 ◽  
Vol 257 (1-2) ◽  
pp. 92-100 ◽  
Author(s):  
Pasi Peltola ◽  
Christian Brun ◽  
Mats Åström ◽  
Olga Tomilina

2019 ◽  
Vol 95 (10) ◽  
Author(s):  
Sasha Vivelo ◽  
Jennifer M Bhatnagar

ABSTRACT Ecologists have frequently observed a pattern of fungal succession during litter decomposition, wherein different fungal taxa dominate different stages of decay in individual ecosystems. However, it is unclear which biological features of fungi give rise to this pattern. We tested a longstanding hypothesis that fungal succession depends on the evolutionary history of species, such that different fungal phyla prefer different decay stages. To test this hypothesis, we performed a meta-analysis across studies in 22 different ecosystem types to synthesize fungal decomposer abundances at early, middle and late stages of plant litter decay. Fungal phyla varied in relative abundance throughout decay, with fungi in the Ascomycota reaching highest relative abundance during early stages of decay (P < 0.001) and fungi in the Zygomycota reaching highest relative abundance during late stages of decay (P < 0.001). The best multiple regression model to explain variation in abundance of these fungal phyla during decay included decay stage, as well as plant litter type and climate factors. Most variation in decay-stage preference of fungal taxa was observed at basal taxonomic levels (phylum and class) rather than finer taxonomic levels (e.g. genus). For many finer-scale taxonomic groups and functional groups of fungi, plant litter type and climate factors were better correlates with relative abundance than decay stage per se, suggesting that the patchiness of fungal community composition in space is related to both resource and climate niches of different fungal taxa. Our study indicates that decomposer fungal succession is partially rooted in fungal decomposers’ deep evolutionary history, traceable to the divergence among phyla.


2014 ◽  
Vol 372 ◽  
pp. 144-161 ◽  
Author(s):  
Stéphane Audry ◽  
Alisson Akerman ◽  
Jean Riotte ◽  
Priscia Oliva ◽  
Jean-Christophe Maréchal ◽  
...  

Biologia ◽  
2006 ◽  
Vol 61 (20) ◽  
Author(s):  
Hana Šantrůčková ◽  
Markéta Krištůfková ◽  
Daniel Vaněk

AbstractThe role of litter composition and quality on the nutrient release was studied in three month laboratory experiment. Spruce needles and leaves of four species dominant in understorey vegetation of the Norway spruce forest were collected in early autumn and incubated at 5°C, 10°C and 15°C. C mineralization was measured every two weeks, concentration of NH4, NO3, dissolved organic N, dissolved organic C and oxalate extractable P at the beginning and end of incubation and decay rate and nutrient release was calculated. Freshly senescent leaves contained less N and P indicating nutrient reallocation. Effect of temperature on a decay rate and nutrient transformation was not significant while the effect of litter quality expressed by C/N ratio at the end of incubation was. The decay rate was the fastest for the fern (Athyrium alpestre) and decreased in order: Callamagrostis villosa > Vaccinium myrtillus > Avenella flexuosa > spruce needles. The critical C/N ratio bellow which mineral N was released in high amount was around a value of 32. The results indicte that an increase of coverage of understorey vegetation can increase a risk of nutrient release.


2003 ◽  
Vol 54 (3-4) ◽  
pp. 249-260 ◽  
Author(s):  
Vladislav Gulis ◽  
Keller Suberkropp

Sign in / Sign up

Export Citation Format

Share Document