scholarly journals Adaptation of plant‐mycorrhizal interactions to moisture availability in prairie restoration

2020 ◽  
Author(s):  
Terra K. Lubin ◽  
Helen M. Alexander ◽  
James D. Bever

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 485b-485
Author(s):  
Lisa M. Barry ◽  
Michael N. Dana

Nurse crops are often recommended in prairie restoration planting. This work investigated several alternative nurse crops to determine their utility in prairie planting. Nurse crops were composed of increasing densities (900, 1800, or 2700 seeds/m2) of partridge pea, spring oats, spring barley, Canada wild rye, or equal mixtures of partridge pea and one of the grasses. The experimental design was a randomized complete-block set in two sites with three blocks per site and 48 treatments per block. Each 3 × 3-m plot contained 1 m2 planted in Dec. 1995 or Mar. 1996 with an equal mix of seven prairie species. The nurse crops were sown over each nine square meter area in April 1996. Plots lacking nurse crops served as controls. Evaluated data consisted of weed pressure rankings and weed and prairie plant dry weight. Nurse crop treatments had a significant effect on weed pressure in both sites. Barley (1800 and 2700 seeds/m2) as well as partridge pea + barley (2700 seeds/m2) were most effective at reducing weed pressure. When weed and prairie plant biomass values were compared, a significant difference was observed for site quality and planting season. Prairie plant establishment was significantly greater in the poorly drained, less-fertile site and spring-sown plots in both sites had significantly higher prairie biomass values. Overall, after two seasons, there was no advantage in using nurse crops over the control. Among nurse crop treatments, oats were most effective in reducing weed competition and enhancing prairie plant growth.



2010 ◽  
Author(s):  
DARYL SMITH ◽  
DAVE WILLIAMS ◽  
GREG HOUSEAL ◽  
KIRK HENDERSON


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.



1975 ◽  
Vol 5 (1) ◽  
pp. 109-121 ◽  
Author(s):  
D. C. F. Fayle

Extension of the root system and stem during the first 30 years of growth of plantation-grown red pine (Pinusresinosa Ait.) on four sites was deduced by root and stem analyses. Maximum rooting depth was reached in the first decade and maximum horizontal extension of roots was virtually complete between years 15 and 20. The main horizontal roots of red pine seldom exceed 11 m in length. Elongation of vertical and horizontal roots was examined in relation to moisture availability and some physical soil conditions. The changing relations within the tree in lineal dimensions and annual elongation of the roots and stem are illustrated. The development of intertree competition above and below ground is considered.





2015 ◽  
Vol 24 (8) ◽  
pp. 1118 ◽  
Author(s):  
Susan Kidnie ◽  
B. Mike Wotton

Prescribed burning can be an integral part of tallgrass prairie restoration and management. Understanding fire behaviour in this fuel is critical to conducting safe and effective prescribed burns. Our goal was to quantify important physical characteristics of southern Ontario’s tallgrass fuel complex prior to and during prescribed burns and synthesise our findings into useful applications for the prescribed fire community. We found that the average fuel load in tallgrass communities was 0.70 kg m–2. Fuel loads varied from 0.38 to 0.96 kg m–2. Average heat of combustion did not vary by species and was 17 334 kJ kg–1. A moisture content model was developed for fully cured, matted field grass, which was found to successfully predict moisture content of the surface layers of cured tallgrass in spring. We observed 25 head fires in spring-season prescribed burns with spread rates ranging from 4 to 55 m min–1. Flame front residence time averaged 27 s, varying significantly with fuel load but not fire spread rate. A grassland spread rate model from Australia showed the closest agreement with observed spread rates. These results provide prescribed-burn practitioners in Ontario better information to plan and deliver successful burns.



2006 ◽  
Vol 33 (21) ◽  
Author(s):  
Philippe Rogel ◽  
Yves M. Tourre ◽  
Vincent Benoit ◽  
Lionel Jarlan




1987 ◽  
Vol 41 (1-2) ◽  
pp. 87-95 ◽  
Author(s):  
J.E. Lewis ◽  
I.J. Ndolo


Sign in / Sign up

Export Citation Format

Share Document