Characterisation of the fuel and fire environment in southern Ontario’s tallgrass prairie

2015 ◽  
Vol 24 (8) ◽  
pp. 1118 ◽  
Author(s):  
Susan Kidnie ◽  
B. Mike Wotton

Prescribed burning can be an integral part of tallgrass prairie restoration and management. Understanding fire behaviour in this fuel is critical to conducting safe and effective prescribed burns. Our goal was to quantify important physical characteristics of southern Ontario’s tallgrass fuel complex prior to and during prescribed burns and synthesise our findings into useful applications for the prescribed fire community. We found that the average fuel load in tallgrass communities was 0.70 kg m–2. Fuel loads varied from 0.38 to 0.96 kg m–2. Average heat of combustion did not vary by species and was 17 334 kJ kg–1. A moisture content model was developed for fully cured, matted field grass, which was found to successfully predict moisture content of the surface layers of cured tallgrass in spring. We observed 25 head fires in spring-season prescribed burns with spread rates ranging from 4 to 55 m min–1. Flame front residence time averaged 27 s, varying significantly with fuel load but not fire spread rate. A grassland spread rate model from Australia showed the closest agreement with observed spread rates. These results provide prescribed-burn practitioners in Ontario better information to plan and deliver successful burns.

2017 ◽  
Vol 47 (7) ◽  
pp. 883-889 ◽  
Author(s):  
Carlos G. Rossa ◽  
Paulo M. Fernandes

A laboratory experimental program addressing fire spread in fuel beds composed of dead foliage litter and vertically placed quasi-live branches, representative of many natural fuel complexes, was carried out for either still-air or wind conditions. Fuel-bed characteristics, fire spread rate, flame geometry, and fuel consumption were assessed and empirical models for estimating several parameters were developed. Weighted fuel moisture content (18%–163%) provided good estimates of fire-behaviour characteristics and accounted for most of the variation in still-air and wind-driven spread rate (0.1–1.3 m·min−1). When predicting still-air fire spread rate, fuel height was the most relevant fuel-bed structural parameter and fuel type had significant influence, whereas for wind-driven spread, the effect of foliar fuel-bed density was dominant and fuel type became irrelevant. Flame length (0.4–2.2 m) increased from still-air to wind-assisted (8 km·h−1) fire spread, but its height remained constant. The fraction of total fuel load and mean woody fuel diameter consumed by fire were reasonably predicted from weighted fuel moisture content alone, but predictions for the latter variable improved substantially by adding foliar fuel load.


2021 ◽  
Vol 13 (12) ◽  
pp. 2386
Author(s):  
Aqil Tariq ◽  
Hong Shu ◽  
Qingting Li ◽  
Orhan Altan ◽  
Mobushir Riaz Khan ◽  
...  

Prescribed burning is a common strategy for minimizing forest fire risk. Fire is introduced under specific environmental conditions, with explicit duration, intensity, and rate of spread. Such conditions deviate from those encountered during the fire season. Prescribed burns mostly affect surface fuels and understory vegetation, an outcome markedly different when compared to wildfires. Data on prescribed burning are crucial for evaluating whether land management targets have been reached. This research developed a methodology to quantify the effects of prescribed burns using multi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) imagery in the forests of southeastern Australia. C-band SAR datasets were specifically used to statistically explore changes in radar backscatter coefficients with the intensity of prescribed burns. Two modeling approaches based on pre- and post-fire ratios were applied for evaluating prescribed burn impacts. The effects of prescribed burns were documented with an overall accuracy of 82.3% using cross-polarized backscatter (VH) SAR data under dry conditions. The VV polarization indicated some potential to detect burned areas under wet conditions. The findings in this study indicate that the C-band SAR backscatter coefficient has the potential to evaluate the effectiveness of prescribed burns due to its sensitivity to changes in vegetation structure.


1986 ◽  
Vol 62 (2) ◽  
pp. 96-100 ◽  
Author(s):  
D. J. McRae

Recent spruce budworm (Choristoneura fumiferana [Clem.]) infestations have resulted in widespread areas of balsam fir (Abies balsamea [L.] Mill.) mortality in Ontario, and there is growing interest in reestablishing these areas quickly as productive forests. One technique being used is prescribed fire after a salvage and bulldozer tramping operation. A 445-ha prescribed burn was carried out under moderate fire danger conditions in northern Ontario. The site, which was covered by balsam fir fuel that had been killed by spruce budworm, was tramped to improve fire spread. Weather, fuel consumption, and fire effects are reported. The burn effectively reduced heavy surface fuel loadings and consequently planting on the site was easier. Key words: Prescribed burning, fire, spruce budworm. Choristoneura fumiferana, balsam fir, Abies balsamea, fuel consumption, site preparation, tramping, stand conversion.


2021 ◽  
Author(s):  
Nisa Karimi ◽  
Daniel J. Larkin ◽  
Mary‐Claire Glasenhardt ◽  
Rebecca S. Barak ◽  
Evelyn W. Williams ◽  
...  

2005 ◽  
Vol 19 (2) ◽  
pp. 319-324 ◽  
Author(s):  
James S. Jacobs ◽  
Roger L. Sheley

Herbicides are an important tool for managing weeds where prescribed fire is used for rangeland improvement. Understanding how the season of herbicide application relates to prescribed burning is important. Our objective was to determine the effect of picloram and chlorsulfuron on Dalmatian toadflax cover, density, and biomass, where these herbicides were applied in the fall before burning or in the spring before or after burning. Six herbicide treatments and an untreated check were applied in a randomized complete block design with four replications to a prescribed burn at two sites infested with Dalmatian toadflax in Montana, United States. Herbicides were applied in the fall preburn, spring preburn, and spring postburn. Site 1 was treated in 1999 and 2000, and site 2 was treated in 2000 and 2001. Cover, biomass, and density of Dalmatian toadflax were sampled in September 2000, 2001, and 2002 at site 1 and September 2001 and 2002 at site 2. At site 1, cover, biomass, and density of Dalmatian toadflax were at least 76% lower compared with the check in both spring-applied picloram treatments, whereas the fall picloram treatment had similar Dalmatian toadflax cover, biomass, and density compared with the check 3 yr after application. By 2002, chlorsulfuron reduced Dalmatian toadflax cover, biomass, and density by at least 79% compared with the check in all timings of application at site 1. At site 2, Dalmatian toadflax cover, biomass, and density were reduced by at least 86% for all picloram and chlorsulfuron treatments in 2002, 2 yr after application. Chlorsulfuron applied in the fall or the spring and picloram applied in the spring effectively suppressed Dalmatian toadflax cover, biomass, and density for up to 3 yr.


Plant Ecology ◽  
2013 ◽  
Vol 214 (9) ◽  
pp. 1169-1180 ◽  
Author(s):  
Jason E. Willand ◽  
Sara G. Baer ◽  
David J. Gibson ◽  
Ryan P. Klopf

1995 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
D Gillon ◽  
V Gomendy ◽  
C Houssard ◽  
J Marechal ◽  
JC Valette

The aim of this study was to assess the effects on combustion characteristics, and their consequences on nutrient losses, of (1) the change in load and packing ratio of the fuel bed, and (2) the change in fuel moisture content. Eighty-one experimental burns were carried out, on a test bench in the laboratory; the fuel was composed of needles and twigs of Pinus pinaster. Two levels of fuel load an dpacking ratio (8t ha-1 needles, packing ratio of 0.040; and 16t ha-1 twigs and needles, packing ratio of 0.066) were compared at constant moisture content (6%); and four levels of moisture content(6%, 12%, 24% and 30% dry weight) were compared at constant fuel load (8t ha-1 needles). At constant moisture content, an increase in the load and packing ratio of the fuel bed led to an increase in the height of flames and in the maximum temperature 25 cm above the fuel bed, in the duration of the rise in temperatures within the fuel, and in the fireline intensity. Conversely, the rate of fire spread decreased. At constant fuel load, an increase in the moisture content of the fuel led to a decrease in the rate of fire spread, in the flame height and the maximum temperature 25 cm above the fuel bed, and in the fireline intensity. In contrast, the maximum temperatures reached within the fuel, when the flaming front was continuous, did not significantly change with varying fuel loads or fuel moisture contents. The percentage fuel consumption was always high, more than 80%, but it significantly decreased with increasing fuel load and packing ratio and with increasing moisture content. Total losses of N, S, and K significantly decreased with increasing fuel load and packing ratio, with increasing moisture content and with decreasing percentage fuel consumption. Losses in P only significantly decreased with increasing fuel load and packing ratio. Losses in Mg and Ca were not significantly affected by fuel load, moisture content. or percentage consumption. An attempt was made to separate volatile from particulate losses, based on the assumption that all the losses of Ca were in particulate form. Whereas losses in particulate form remained relatively constant, losses of nutrients in volatile form seem to have been related to the percentage fuel consumption. Even if these experimental burns were of low intensity (40 to 56 kW m-1), their impact, in terms of lethal temperatures and nutrient losses, was not negligible, particularly for N and P. The increasing fireline intensity with increasing fuel load was not accompanied by an enhancement in the proportion of nutrient losses. In the same way, the strong decrease in fireline intensity with increasing fuel moisture content led only to a slight decrease in some nutrient losses. It was through their effect on the percentage fuel consumption that fuel load or moisture content modified the nutrient losses, particularly volatile losses.


2011 ◽  
Vol 144 (12) ◽  
pp. 3127-3139 ◽  
Author(s):  
Diane L. Larson ◽  
JB. Bright ◽  
Pauline Drobney ◽  
Jennifer L. Larson ◽  
Nicholas Palaia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document