scholarly journals From the Ground Up: Prairies on Reclaimed Mine Land—Impacts on Soil and Vegetation

Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1871 ◽  
Author(s):  
Porntip Puttaso ◽  
Weravart Namanusart ◽  
Kanjana Thumanu ◽  
Bhanudacha Kamolmanit ◽  
Alain Brauman ◽  
...  

Leaf litter plays a major role in carbon and nutrient cycling, as well as in fueling food webs. The chemical composition of a leaf may directly and indirectly influence decomposition rates by influencing rates of biological reactions and by influencing the accumulation of soil organic carbon content, respectively. This study aimed to assess the impact of the chemical composition of rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) leaves on various soil properties of different ages of rubber (4–5, 11–12, and 22–23 year-old). Synchrotron-based Fourier transform infrared microspectroscopy (Sr-FTIR) was utilized for analyzing the chemical composition of plant leaves. The Sr-FTIR bands illustrated that the epidermis of rubber leaves from 4–5-year-old trees was found to contain a high quantity of polysaccharides while mesophyll from 22–23-year-old trees had a large number of polysaccharides. The change in soil properties in the older rubber plantation could be attributed to its chemical composition. The change in soil properties across all tree ages, i.e., increased litter and organic carbon content, was a relatively strong driver of soil biota evolution. The aliphatic of C-H in the leaves showed high correlation with soil organic carbon (SOC) and permanganate-oxidizable C (POXC) from 22–23 year-old trees. This study shows the differences in the organic chemical composition of leaves that are consequential to soil organic carbon.


2020 ◽  
Author(s):  
Chiara Ferré ◽  
Gianni Facciotto ◽  
Sara Bergante ◽  
Roberto Comolli

<p>We explored the effects of conversion from vineyard to tree plantation on humus forms, soil organic carbon (SOC) stocks and other soil properties by sampling paired plots in a hilly area of Monferrato (Piedmont, Italy).</p><p>The study area is located at Rosignano Monferrato (AL) and includes a vineyard (VY) and a nearby 30-years-old tree plantation (TP) for wood production that replaced an existing vineyard, where eight poplar clones were consociated with other timber species (wild cherry, European ash, manna ash, deodar cedar). The area under study covers 3 ha and extends along a slighty-wavy slope with an average gradient of 15%; according to the WRB classification, soils are Calcaric Cambisols (Loamic).</p><p>The impact of land use change on soil properties was evaluated considering the spatial variability of soil characteristics, testing for autocorrelation among the model residuals. Soil sampling was performed from 3 layers (0-10 cm, 10-40 cm and 40-70 cm) at 61 and 69 points in the VY and the TP respectively, to characterize soil pH in water, organic carbon content and SOC stock, C:N ratio, soil texture and total carbonates. The common pedological origin of soils within the study area was verified and confirmed by comparability of soil texture and carbonates content of the deeper layer.</p><p>At TP the humus forms were described and classified; the organic horizons were sampled and analyzed for OC content determination.</p><p>Statistical analyses showed significant (p-value < 0.05) differences for all the investigated layers between the considered land uses with regard to pH, SOC stock and C:N ratio.</p><p>Our study provided evidence that: (1) the conversion from vineyard to tree plantation resulted in the appearance of organic horizons: the main humus forms in TP were Mull and Amphi; (2) 30 years of tree plantation strongly modified SOC stock, resulting in an increase of 26% in the first 70 cm, which became 42% if the organic layers were included; (2) soil acidification (pH difference of 0.4) and change in SOC type (C:N increase of 1) were also observed in TP compared to VY; and (3) the spatial distribution of soil properties in the VY were affected by erosive and depositional dynamics unlike the TP where vegetation counterbalance erosion.</p>


2021 ◽  
Author(s):  
Christina Lekka ◽  
George P. Petropoulos ◽  
Dimitrios Triantakonstantis ◽  
Spyros Detsikas ◽  
Christos Chalkias

<p><strong>Abstract</strong></p><p>The National Map of Saline – Alkaline Soils of Greece was recently developed within the initiative of the European Soil Partnership (ESP) of FAO. The technique combines between other MODIS satellite imagery, spatial interpolation methods and ground surveying to derive at 1 km spatial resolution maps of soil’s salinity (SS) and soil organic carbon (SOC).</p><p>The present study investigates for the first time the development of higher resolution maps of these soil properties adopting the aforementioned methodology. Furthermore, this study attempted to estimate the Carbon sequestration (SOC) using Remote Sensing and geostatistic methods of spatial analysis, a concern that is eminent today due to its effect on climate change mitigation.</p><p>As a case study the island of Mytilene in Greece is used, for which detailed information on soil properties as well as climatic, geomorphological, geological and soil data was available from previous studies. An MCDA (Multiple Criteria Decision Analysis) method was applied in a GIS environment using Landsat satellite imagery for the composition of a Saline - Alkaline map. Between the key soil parameters estimated spatially included the Electrical Conductivity (EC), Exchangeable Sodium Percentage (ESP) and pH. Geospatial data analysis methods were implemented to visualize all the derived parameters related for the study area and to analyze the final products in the spatial domain.</p><p>Finding suggests that climate change and soil directly affect one another. The impact of environmental and climate change in addition to unsustainable agricultural practices seems to be linked to salinity increase, soil erosion and loss of organic matter.  In addition, when land degradation as well as erosion and loss of vegetation occur, SOC emissions increase. Under these conditions, soil cannot absorb enough amounts of CO2, especially when soil salinization and sodicity exists; inputs are further limited due to declines in vegetation health. The role of geoinformation technologies in support of sustainable agricultural production under the pressure of both climate change and anthropogenic activities is also discussed within the present study framework.  </p><p><strong>KEYWORDS:</strong> geoinformation, soil, pH, salinity, soil organic carbon, geostatistics, earth observation, GIS, Greece</p>


Author(s):  
Bing Yu ◽  
Patteson Chula Mwagona ◽  
Yuncong Li ◽  
Xiaoyu Li ◽  
Hongjun Wang ◽  
...  

This study investigated the spatial variability of soil organic carbon (SOC), total nitrogen (TN), soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) in Hongqipao reservoir dominated by different vegetation types and the possible relationships with other soil properties. Top 0–50cm soil samples were collected in sites dominated by different vegetation types within the reservoir littoral zone. There was high spatial variability for SOC, TN, SMBC and SMBN in the Hongqipao reservoir. In addition, the SOC, TN, SMBC and SMBN contents decreased with increasing soil depth. This could be attributed by the fact that when plants detritus decompose, most of their organic matter is mineralized and a new soil layer which contains a greater amount of organic carbon is formed at the top. According to Pearson's correlation values and redundancy analysis (RDA) results, SOC was significantly and positively correlated with TN likely because the vegetation organic matter and liter could be the main nitrogen sources. Similarly, soil moisture content (MC) was significant positive correlated with SOC and TN. Conversely, BD was significant negative correlated with SOC and TN contents in the 0-50 cm soil profiles. However, no significant correlations were observed between SOC, TN, SMBC and SMBN contents and soil pH values. SMBN was significantly and positive correlated with C:N ratio and BD and negative related with MC. Multiple linear regression model revealed that all measures soil properties in this study could explain higher significant variability of the response variables (SOC, TN, SMBC and SMBN contents). This implies that all the measured soil variables within the different vegetation types in the reservoir played a crucial role in determining the contents of SOC, TN, SMBC and SMBN. This study further suggests that vegetation types play a major role in determining the spatial characteristics of SOC and TN. Any changes in the vegetation types in the reservoir may influence the distribution of SOC and TN. This may affect the global carbon budget and the atmospheric greenhouse gas concentration significantly.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 63-73 ◽  
Author(s):  
Samuel Bouchoms ◽  
Zhengang Wang ◽  
Veerle Vanacker ◽  
Sebastian Doetterl ◽  
Kristof Van Oost

Sign in / Sign up

Export Citation Format

Share Document