scholarly journals Is ski boot sole abrasion a potential ACL injury risk factor for male and female recreational skiers?

2019 ◽  
Vol 29 (5) ◽  
pp. 736-741 ◽  
Author(s):  
Markus Posch ◽  
Gerhard Ruedl ◽  
Alois Schranz ◽  
Katja Tecklenburg ◽  
Martin Burtscher
2021 ◽  
pp. 036354652110504
Author(s):  
Grégoire Micicoi ◽  
Chistophe Jacquet ◽  
Raghbir Khakha ◽  
Sally LiArno ◽  
Ahmad Faizan ◽  
...  

Background: Anterior cruciate ligament (ACL) injuries are multifactorial events that may be influenced by morphometric parameters. Associations between primary ACL injuries or graft ruptures and both femoral and tibial bony risk factors have been well described in the literature. Purpose: To determine values of femoral and tibial bony morphology that have been associated with ACL injuries in a reference population. Further, to define interindividual variations according to participant demographics and to identify the proportion of participants presenting at least 1 morphological ACL injury risk factor. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Computed tomography scans of 382 healthy participants were examined. The following bony ACL risk factors were analyzed: notch width index (NWI), lateral femoral condylar index (LFCI), medial posterior plateau tibial angle (MPPTA), and lateral posterior plateau tibial angle (LPPTA). The proportion of this healthy population presenting with at least 1 pathological ACL injury risk factor was determined. A multivariable logistic regression model was constructed to determine the influence of demographic characteristics. Results: According to published thresholds for ACL bony risk factors, 12% of the examined knees exhibited an intercondylar notch width <18.9 mm, 25% had NWI <0.292, 62% exhibited LFCI <0.67, 54% had MPPTA <83.6°, and 15% had LPPTA <81.6°. Only 14.4% of participants exhibited no ACL bony risk factors, whereas 84.5% had between 2 and 4 bony risk factors and 1.1% had all bony risk factors. The multivariate analysis demonstrated that only the intercondylar notch width ( P < .0001) was an independent predictor according to both sex and ethnicity; the LFCI ( P = .012) and MMPTA ( P = .02) were independent predictors according to ethnicity. Conclusion: The precise definition of bony anatomic risk factors for ACL injury remains unclear. Based on published thresholds, 15% to 62% of this reference population would have been considered as being at risk. Large cohort analyses are required to confirm the validity of previously described morphological risk factors and to define which participants may be at risk of primary ACL injury and reinjury after surgical reconstruction.


2016 ◽  
Vol 5 (3) ◽  
Author(s):  
Rurin Ardiyanti ◽  
Afriwardi Afriwardi ◽  
Nur Afrainin Syah

AbstrakCedera Ligamen Krusiat Anterior (LKA) adalah trauma pada atlet yang memerlukan tindakan bedah dan berrisiko menjadi osteoartritis. Berbagai macam faktor dapat menyebabkan cedera LKA, seperti Indeks Massa Tubuh (IMT) yang merupakan salah satu faktor risiko cedera LKA. Tujuan penelitian ini adalah menentukan hubungan IMT dengan cedera LKA. Penelitian ini menggunakan metode analitik observasional. Sampel adalah 271 atlet diambil dari seluruh cabang olahraga kontak di KONI (Komite Olahraga Nasional Indonesia) Jawa Timur. Data yang diperoleh berupa IMT dan kejadian cedera LKA pada atlet dalam 1 tahun, kemudian dianalisis dengan uji kemaknaan Fisher. Peneliti menemukan 7% (19 orang) mengalami cedera LKA. Penelitian ini menemukan bahwa presentase cedera LKA pada IMT tinggi (>24,9 kg/m2) dua kali lebih banyak dibanding pada IMT tidak tinggi (≤24,9 kg/m2), yaitu 12,5% dan 6,5%. Pada uji Fisher tidak ditemukan hubungan antara IMT dan cedera LKA (p>0,05).  Penelitian ini menunjukkan bahwa terdapat risiko cedera LKA pada atlet dengan IMT tinggi, namun tidak signifikan secara statistik. Banyak faktor risiko cedera LKA lainnya yang tidak dapat dikontrol melalui metodologi penelitian ini.Kata kunci: indeks massa tubuh, cedera ligamen krusiat anterior, atlet AbstractAnterior Cruciate Ligament (ACL) injuries are common on athletes that need surgical treatment and a risk to become osteoarthritis. There are many factors contributed to ACL injury. Body Mass Index (BMI) is one of ACL injury risk factor. The objective of this study was to determine the relationship between BMI and ACL injury. This was an observasional analitic study. The sample was 271 contact sport athletes at KONI East Java. Data about BMI and ACL injury on the athlete for 1 year was collected. The data then was analysed by Fisher test. There were 7% (19 persons) of athletes suffers from ACL injury. This study found that the proportion of ACL injury on athlete with high BMI (>24,9 kg/m2) was twice compared to athlete without high BMI (≤24,9 kg/m2), 12,5% and 6,3% respectively. The conclusion is the different is not significant statitically. This study showed that high BMI on athletes was a risk factor for ACL injury but not significant statistically.Keywords: body mass index, anterior cruciate ligament, athlete


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 997
Author(s):  
Alessandro de Sire ◽  
Nicola Marotta ◽  
Andrea Demeco ◽  
Lucrezia Moggio ◽  
Pasquale Paola ◽  
...  

Anterior cruciate ligament (ACL) injury incidence is often underestimated in tennis players, who are considered as subjects conventionally less prone to knee injuries. However, evaluation of the preactivation of knee stabilizer muscles by surface electromyography (sEMG) showed to be a predictive value in the assessment of the risk of ACL injury. Therefore, this proof-of-concept study aimed at evaluating the role of visual input on the thigh muscle preactivation through sEMG to reduce ACL injury risk in tennis players. We recruited male, adult, semiprofessional tennis players from July to August 2020. They were asked to drop with the dominant lower limb from a step, to evaluate—based on dynamic valgus stress—the preactivation time of the rectus femoris (RF), vastus medialis, biceps femoris, and medial hamstrings (MH), through sEMG. To highlight the influence of visual inputs, the athletes performed the test blindfolded and not blindfolded on both clay and grass surfaces. We included 20 semiprofessional male players, with a mean age 20.3 ± 4.8 years; results showed significant early muscle activation when the subject lacked visual input, but also when faced with a less-safe surface such as clay over grass. Considering the posteromedial–anterolateral relationship (MH/RF ratio), tennis players showed a significant higher MH/RF ratio if blindfolded (22.0 vs. 17.0% not blindfolded; p < 0.01) and percentage of falling on clay (17.0% vs. 14.0% in grass; p < 0.01). This proof-of-principle study suggests that in case of absence of visual input or falling on a surface considered unsafe (clay), neuro-activation would tend to protect the anterior stress of the knee. Thus, the sEMG might play a crucial role in planning adequate athletic preparation for semiprofessional male athletes in terms of reduction of ACL injury risk.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0015
Author(s):  
Dustin R. Grooms ◽  
Jed A. Diekfuss ◽  
Alexis B. Slutsky-Ganesh ◽  
Cody R. Criss ◽  
Manish Anand ◽  
...  

Background: Anterior cruciate ligament (ACL) injury is secondary to a multifactorial etiology encompassing anatomical, biological, mechanical, and neurological factors. The nature of the injury being primarily due to non-contact mechanics further implicates neural control as a key injury-risk factor, though it has received considerably less study. Purpose: To determine the contribution of neural activity to injury-risk mechanics in ecological sport-specific VR landing scenarios. Methods: Ten female high-school soccer players (15.5±0.85 years; 165.0±6.09 cm; 59.1±11.84 kg) completed a neuroimaging session to capture neural activity during a bilateral leg press and a 3D biomechanics session performing a header within a VR soccer scenario. The bilateral leg press involved four 30 s blocks of repeated bilateral leg presses paced to a metronome beat of 1.2 Hz with 30 s rest between blocks. The VR soccer scenario simulated a corner-kick, requiring the participant to jump and head a virtual soccer ball into a virtual goal (Figure 1A-E). Initial contact and peak knee flexion and abduction angles were extracted during the landing from the header as injury-risk variables of interest and were correlated with neural activity. Results: Evidenced in Table 1 and Figure 1 (bottom row), increased initial contact abduction, increased peak abduction, and decreased peak flexion were associated with increased sensory, visual-spatial, and cerebellar activity (r2= 0.42-0.57, p corrected < .05, z max > 3.1, table & figure 1). Decreased initial contact flexion was associated with increased frontal cortex activity (r2= 0.68, p corrected < .05, z max > 3.1). Conclusion: Reduced neural efficiency (increased activation) of key regions that integrate proprioceptive, visual-spatial, and neurocognitive activity for motor control may influence injury-risk mechanics in sport. The regions found to increase in activity in relation to higher injury-risk mechanics are typically activated to assist with spatial navigation, environmental interaction, and precise motor control. The requirement for athletes to increase their activity for more basic knee motor control may result in fewer neural resources available to maintain knee joint alignment, allocate environmental attention, and handle increased motor coordination demands. These data indicate that strategies to enhance efficiency of visual-spatial and cognitive-motor control during high demand sporting activities is warranted to improve ACL injury-risk reduction. [Figure: see text][Table: see text]


2021 ◽  
pp. 194173812110379
Author(s):  
Steven L. Dischiavi ◽  
Alexis A Wright ◽  
Rachel A. Heller ◽  
Claire E. Love ◽  
Adam J. Salzman ◽  
...  

Context: Anterior cruciate ligament (ACL) injury risk reduction programs have become increasingly popular. As ACL injuries continue to reflect high incidence rates, the continued optimization of current risk reduction programs, and the exercises contained within them, is warranted. The exercises must evolve to align with new etiology data, but there is concern that the exercises do not fully reflect the complexity of ACL injury mechanisms. It was outside the scope of this review to address each possible inciting event, rather the effort was directed at the elements more closely associated with the end point of movement during the injury mechanism. Objective: To examine if exercises designed to reduce the risk of ACL injury reflect key injury mechanisms: multiplanar movement, single limb stance, trunk and hip dissociative control, and a flight phase. Data Sources: A systematic search was performed using PubMed, Medline, EBSCO (CINAHL), SPORTSDiscus, and PEDro databases. Study Selection: Eligibility criteria were as follows: (1) randomized controlled trials or prospective cohort studies, (2) male and/or female participants of any age, (3) exercises were targeted interventions to prevent ACL/knee injuries, and (4) individual exercises were listed and adequately detailed and excluded if program was unable to be replicated clinically. Study Design: Scoping review. Level of Evidence: Level 4. Data Extraction: A total of 35 studies were included, and 1019 exercises were extracted for analysis. Results: The average Consensus on Exercise Reporting Template score was 11 (range, 0-14). The majority of exercises involved bilateral weightbearing (n = 418 of 1019; 41.0%), followed by single limb (n = 345 of 1019; 33.9%) and nonweightbearing (n = 256 of 1019; 25.1%). Only 20% of exercises incorporated more than 1 plane of movement, and the majority of exercises had sagittal plane dominance. Although 50% of exercises incorporated a flight phase, only half of these also involved single-leg weightbearing. Just 16% of exercises incorporated trunk and hip dissociation, and these were rarely combined with other key exercise elements. Only 13% of exercises challenged more than 2 key elements, and only 1% incorporated all 4 elements (multiplanar movements, single limb stance, trunk and hip dissociation, flight phase) simultaneously. Conclusion: Many risk reduction exercises do not reflect the task-specific elements identified within ACL injury mechanisms. Addressing the underrepresentation of key elements (eg, trunk and hip dissociation, multiplanar movements) may optimize risk reduction in future trials.


Sign in / Sign up

Export Citation Format

Share Document