scholarly journals The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana

2014 ◽  
Vol 79 (3) ◽  
pp. 492-506 ◽  
Author(s):  
Marta Busse‐Wicher ◽  
Thiago C. F. Gomes ◽  
Theodora Tryfona ◽  
Nino Nikolovski ◽  
Katherine Stott ◽  
...  
Plant Science ◽  
2011 ◽  
Vol 180 (3) ◽  
pp. 470-479 ◽  
Author(s):  
Jonatan U. Fangel ◽  
Bent L. Petersen ◽  
Niels B. Jensen ◽  
William G.T. Willats ◽  
Antony Bacic ◽  
...  

2019 ◽  
Vol 85 (23) ◽  
Author(s):  
Silvia Hüttner ◽  
Anikó Várnai ◽  
Dejan M. Petrović ◽  
Cao Xuan Bach ◽  
Dang Thi Kim Anh ◽  
...  

ABSTRACT The thermophilic biomass-degrader Malbranchea cinnamomea exhibits poor growth on cellulose but excellent growth on hemicelluloses as the sole carbon source. This is surprising considering that its genome encodes eight lytic polysaccharide monooxygenases (LPMOs) from auxiliary activity family 9 (AA9), enzymes known for their high potential in accelerating cellulose depolymerization. We characterized four of the eight (M. cinnamomea AA9s) McAA9s, namely, McAA9A, McAA9B, McAA9F, and McAA9H, to gain a deeper understanding about their roles in the fungus. The characterized McAA9s were active on hemicelluloses, including xylan, glucomannan, and xyloglucan, and furthermore, in accordance with transcriptomics data, differed in substrate specificity. Of the McAA9s, McAA9H is unique, as it preferentially cleaves residual xylan in phosphoric acid-swollen cellulose (PASC). Moreover, when exposed to cellulose-xylan blends, McAA9H shows a preference for xylan and for releasing (oxidized) xylooligosaccharides. The cellulose dependence of the xylan activity suggests that a flat conformation, with rigidity similar to that of cellulose microfibrils, is a prerequisite for productive interaction between xylan and the catalytic surface of the LPMO. McAA9H showed a similar trend on xyloglucan, underpinning the suggestion that LPMO activity on hemicelluloses strongly depends on the polymers’ physicochemical context and conformation. Our results support the notion that LPMO multiplicity in fungal genomes relates to the large variety of copolymeric polysaccharide arrangements occurring in the plant cell wall. IMPORTANCE The Malbranchea cinnamomea LPMOs (McAA9s) showed activity on a broad range of soluble and insoluble substrates, suggesting their involvement in various steps of biomass degradation besides cellulose decomposition. Our results indicate that the fungal AA9 family is more diverse than originally thought and able to degrade almost any kind of plant cell wall polysaccharide. The discovery of an AA9 that preferentially cleaves xylan enhances our understanding of the physiological roles of LPMOs and enables the use of xylan-specific LPMOs in future applications.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1558
Author(s):  
Nathan T. Reem ◽  
Lauran Chambers ◽  
Ning Zhang ◽  
Siti Farah Abdullah ◽  
Yintong Chen ◽  
...  

Pectin is a critical component of the plant cell wall, supporting wall biomechanics and contributing to cell wall signaling in response to stress. The plant cell carefully regulates pectin methylesterification with endogenous pectin methylesterases (PMEs) and their inhibitors (PMEIs) to promote growth and protect against pathogens. We expressed Aspergillus nidulans pectin methylesterase (AnPME) in Arabidopsis thaliana plants to determine the impacts of methylesterification status on pectin function. Plants expressing AnPME had a roughly 50% reduction in methylester content compared with control plants. AnPME plants displayed a severe dwarf phenotype, including small, bushy rosettes and shorter roots. This phenotype was caused by a reduction in cell elongation. Cell wall composition was altered in AnPME plants, with significantly more arabinose and significantly less galacturonic acid, suggesting that plants actively monitor and compensate for altered pectin content. Cell walls of AnPME plants were more readily degraded by polygalacturonase (PG) alone but were less susceptible to treatment with a mixture of PG and PME. AnPME plants were insensitive to osmotic stress, and their susceptibility to Botrytis cinerea was comparable to wild type plants despite their compromised cell walls. This is likely due to upregulated expression of defense response genes observed in AnPME plants. These results demonstrate the importance of pectin in both normal growth and development, and in response to biotic and abiotic stresses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Paavo A. Penttilä ◽  
Michael Altgen ◽  
Muhammad Awais ◽  
Monika Österberg ◽  
Lauri Rautkari ◽  
...  

AbstractWood and other plant-based resources provide abundant, renewable raw materials for a variety of applications. Nevertheless, their utilization would greatly benefit from more efficient and accurate methods to characterize the detailed nanoscale architecture of plant cell walls. Non-invasive techniques such as neutron and X-ray scattering hold a promise for elucidating the hierarchical cell wall structure and any changes in its morphology, but their use is hindered by challenges in interpreting the experimental data. We used small-angle neutron scattering in combination with contrast variation by poly(ethylene glycol) (PEG) to identify the scattering contribution from cellulose microfibril bundles in native wood cell walls. Using this method, mean diameters for the microfibril bundles from 12 to 19 nm were determined, without the necessity of cutting, drying or freezing the cell wall. The packing distance of the individual microfibrils inside the bundles can be obtained from the same data. This finding opens up possibilities for further utilization of small-angle scattering in characterizing the plant cell wall nanostructure and its response to chemical, physical and biological modifications or even in situ treatments. Moreover, our results give new insights into the interaction between PEG and the wood nanostructure, which may be helpful for preservation of archaeological woods.


2013 ◽  
Vol 4 ◽  
Author(s):  
Cécile Albenne ◽  
Hervé Canut ◽  
Elisabeth Jamet

Planta ◽  
2012 ◽  
Vol 236 (5) ◽  
pp. 1419-1431 ◽  
Author(s):  
Catherine Digonnet ◽  
Yves Martinez ◽  
Nicolas Denancé ◽  
Marine Chasseray ◽  
Patrick Dabos ◽  
...  

2017 ◽  
Author(s):  
Timo Engelsdorf ◽  
Nora Gigli-Bisceglia ◽  
Manikandan Veerabagu ◽  
Joseph F. McKenna ◽  
Frauke Augstein ◽  
...  

AbstractPlant cells are surrounded by walls, which must often meet opposing functional requirements during plant growth and defense. The cells meet them by modifying wall structure and composition in a tightly controlled and adaptive manner. The modifications seem to be mediated by a dedicated cell wall integrity (CWI) maintenance mechanism. Currently the mode of action of the mechanism is not understood and it is unclear how its activity is coordinated with established plant defense signaling. We investigated responses to induced cell wall damage (CWD) impairing CWI and the underlying mechanism in Arabidopsis thaliana. Interestingly inhibitor- and enzyme-derived CWD induced similar, turgor-sensitive stress responses. Genetic analysis showed that the receptor-like kinase (RLK) FEI2 and the mechano-sensitive, plasma membrane-localized Ca2+- channel MCA1 function downstream of the THE1 RLK in CWD perception. Phenotypic clustering with 27 genotypes identified a core group of RLKs and ion channels, required for activation of CWD responses. By contrast, the responses were repressed by pattern-triggered immune (PTI) signaling components including PEPR1 and 2, the receptors for the immune signaling peptide AtPep1. Interestingly AtPep1 application repressed CWD-induced phytohormone accumulation in a PEPR1/2-dependent manner. These results suggest that PTI suppresses CWD-induced defense responses through elicitor peptide-mediated signaling during defense response activation. If PTI is impaired, the suppression of CWD-induced responses is alleviated, thus compensating for defective PTI.Significance statementStress resistance and plant growth determine food crop yield and efficiency of bioenergy production from ligno-cellulosic biomass. Plant cell walls are essential elements of the biological processes, therefore functional integrity of the cell walls must be maintained throughout. Here we investigate the plant cell wall integrity maintenance mechanism. We characterize its mode of action, identify essential signaling components and show that the AtPep1 signaling peptide apparently coordinates pattern triggered immunity (PTI) and cell wall integrity maintenance in plants. These results suggest how PTI and cell wall modification coordinately regulate biotic stress responses with plants possibly compensating for PTI impairment through enhanced activation of stress responses regulated by the CWI maintenance mechanism.


2016 ◽  
Vol 44 (1) ◽  
pp. 74-78 ◽  
Author(s):  
Marta Busse-Wicher ◽  
Nicholas J. Grantham ◽  
Jan J. Lyczakowski ◽  
Nino Nikolovski ◽  
Paul Dupree

The molecular architecture of plant secondary cell walls is still not resolved. There are several proposed structures for cellulose fibrils, the main component of plant cell walls and the conformation of other molecules is even less well known. Glucuronic acid (GlcA) substitution of xylan (GUX) enzymes, in CAZy family glycosyl transferase (GT)8, decorate the xylan backbone with various specific patterns of GlcA. It was recently discovered that dicot xylan has a domain with the side chain decorations distributed on every second unit of the backbone (xylose). If the xylan backbone folds in a similar way to glucan chains in cellulose (2-fold helix), this kind of arrangement may allow the undecorated side of the xylan chain to hydrogen bond with the hydrophilic surface of cellulose microfibrils. MD simulations suggest that such interactions are energetically stable. We discuss the possible role of this xylan decoration pattern in building of the plant cell wall.


2008 ◽  
Vol 32 ◽  
pp. 197-202 ◽  
Author(s):  
Hung Kha ◽  
Sigrid Tuble ◽  
Shankar Kalyanasundaram ◽  
Richard E. Williamson

Illuminating fundamental aspects of plant cell wall mechanics will lead to novel biological and engineering inspired strategies for application in the cotton and wood fiber industries and in developing novel plant-derived materials that are increasingly seen as environmentally friendly alternatives. The stiffness properties of cell wall polymers such as cellulose microfibrils and xyloglucans are known but the relationship between the composite structure of the wall and its effective stiffness remains poorly understood. Understanding this relationship is important to engineers using and designing plant-derived materials and to biologists studying plant growth. We have developed a software system to generate microfibril-xyloglucan networks resembling those found in cell walls. Finite element analysis was implemented to predict the effective Young’s modulus of varying sizes of the microfibril-xyloglucan network. Results from the finite element models show that the network’s effective moduli of the cell walls having microfibrils parallel to applied loadings are relatively high (~90-215MPa) compared with those of the walls having randomly oriented microfibrils (~20-47MPa). The walls having microfibrils parallel to each other but perpendicular to applied loadings have lowest stiffness (~17-118kPa). The Young’s moduli are significantly lower than those of its constituent polymers and generally in agreement with experimentally measured values.


Sign in / Sign up

Export Citation Format

Share Document