scholarly journals Xylan decoration patterns and the plant secondary cell wall molecular architecture

2016 ◽  
Vol 44 (1) ◽  
pp. 74-78 ◽  
Author(s):  
Marta Busse-Wicher ◽  
Nicholas J. Grantham ◽  
Jan J. Lyczakowski ◽  
Nino Nikolovski ◽  
Paul Dupree

The molecular architecture of plant secondary cell walls is still not resolved. There are several proposed structures for cellulose fibrils, the main component of plant cell walls and the conformation of other molecules is even less well known. Glucuronic acid (GlcA) substitution of xylan (GUX) enzymes, in CAZy family glycosyl transferase (GT)8, decorate the xylan backbone with various specific patterns of GlcA. It was recently discovered that dicot xylan has a domain with the side chain decorations distributed on every second unit of the backbone (xylose). If the xylan backbone folds in a similar way to glucan chains in cellulose (2-fold helix), this kind of arrangement may allow the undecorated side of the xylan chain to hydrogen bond with the hydrophilic surface of cellulose microfibrils. MD simulations suggest that such interactions are energetically stable. We discuss the possible role of this xylan decoration pattern in building of the plant cell wall.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Paavo A. Penttilä ◽  
Michael Altgen ◽  
Muhammad Awais ◽  
Monika Österberg ◽  
Lauri Rautkari ◽  
...  

AbstractWood and other plant-based resources provide abundant, renewable raw materials for a variety of applications. Nevertheless, their utilization would greatly benefit from more efficient and accurate methods to characterize the detailed nanoscale architecture of plant cell walls. Non-invasive techniques such as neutron and X-ray scattering hold a promise for elucidating the hierarchical cell wall structure and any changes in its morphology, but their use is hindered by challenges in interpreting the experimental data. We used small-angle neutron scattering in combination with contrast variation by poly(ethylene glycol) (PEG) to identify the scattering contribution from cellulose microfibril bundles in native wood cell walls. Using this method, mean diameters for the microfibril bundles from 12 to 19 nm were determined, without the necessity of cutting, drying or freezing the cell wall. The packing distance of the individual microfibrils inside the bundles can be obtained from the same data. This finding opens up possibilities for further utilization of small-angle scattering in characterizing the plant cell wall nanostructure and its response to chemical, physical and biological modifications or even in situ treatments. Moreover, our results give new insights into the interaction between PEG and the wood nanostructure, which may be helpful for preservation of archaeological woods.



2016 ◽  
Vol 7 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Myriam M. L. Grundy ◽  
Frédéric Carrière ◽  
Alan R. Mackie ◽  
David A. Gray ◽  
Peter J. Butterworth ◽  
...  

Intact cell walls of almond prevent lipase penetration thus hindering lipid digestion.



Author(s):  
H.J. Gilbert ◽  
G.P. Hazlewood

Plant structural polysaccharides provide a major source of nutrient for ruminant livestock. These carbohydrates are not degraded by mammalian-derived enzymes, but are hydrolysed by rumen microbial plant cell wall hydrolases. In view of the pivotal role of microbial cellulases and xylanases in ruminant nutrition, there has been considerable interest in these enzymes. In this paper we wish to illustrate how recombinant DNA (rDNA) technology can be utilised to dissect the biochemistry and molecular architecture of these enzymes, and provides us with the opportunity of generating novel cellulases and xylanases with increased capacity to hydrolyse the plant cell wall.In general cellulases and xylanases from anaerobic microbes associate into large molecular weight complexes, whose integral structures are responsible for the efficient hydrolysis of plant structural polysaccharides. The feasibility of altering these complexes, or transferring them to other organisms represents a significant challenge.



2008 ◽  
Vol 32 ◽  
pp. 197-202 ◽  
Author(s):  
Hung Kha ◽  
Sigrid Tuble ◽  
Shankar Kalyanasundaram ◽  
Richard E. Williamson

Illuminating fundamental aspects of plant cell wall mechanics will lead to novel biological and engineering inspired strategies for application in the cotton and wood fiber industries and in developing novel plant-derived materials that are increasingly seen as environmentally friendly alternatives. The stiffness properties of cell wall polymers such as cellulose microfibrils and xyloglucans are known but the relationship between the composite structure of the wall and its effective stiffness remains poorly understood. Understanding this relationship is important to engineers using and designing plant-derived materials and to biologists studying plant growth. We have developed a software system to generate microfibril-xyloglucan networks resembling those found in cell walls. Finite element analysis was implemented to predict the effective Young’s modulus of varying sizes of the microfibril-xyloglucan network. Results from the finite element models show that the network’s effective moduli of the cell walls having microfibrils parallel to applied loadings are relatively high (~90-215MPa) compared with those of the walls having randomly oriented microfibrils (~20-47MPa). The walls having microfibrils parallel to each other but perpendicular to applied loadings have lowest stiffness (~17-118kPa). The Young’s moduli are significantly lower than those of its constituent polymers and generally in agreement with experimentally measured values.



2006 ◽  
Vol 19 (10) ◽  
pp. 1072-1081 ◽  
Author(s):  
Tim Beliën ◽  
Steven Van Campenhout ◽  
Johan Robben ◽  
Guido Volckaert

Endo-β-1,4-xylanases (EC 3.2.1.8) are key enzymes in the degradation of xylan, the predominant hemicellulose in the cell walls of plants and the second most abundant polysaccharide on earth. A number of endoxylanases are produced by microbial phytopathogens responsible for severe crop losses. These enzymes are considered to play an important role in phytopathogenesis, as they provide essential means to the attacking organism to break through the plant cell wall. Plants have evolved numerous defense mechanisms to protect themselves against invading pathogens, amongst which are proteinaceous inhibitors of cell wall-degrading enzymes. These defense mechanisms are triggered when a pathogen-derived elicitor is recognized by the plant. In this review, the diverse aspects of endoxylanases in promoting virulence and in eliciting plant defense systems are highlighted. Furthermore, the role of the relatively recently discovered cereal endoxylanase inhibitor families TAXI (Triticum aestivum xylanase inhibitor) and XIP (xylanase inhibitor protein) in plant defense is discussed.



Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.



2020 ◽  
Vol 50 (2) ◽  
pp. 176-186
Author(s):  
Yi MAN ◽  
RuiLi LI ◽  
YuFen BU ◽  
Na SUN ◽  
YanPing JING ◽  
...  


2020 ◽  
Author(s):  
Huimin Xu ◽  
Yuanyuan Zhao ◽  
Yuanzhen Suo ◽  
Yayu Guo ◽  
Yi Man ◽  
...  

Abstract Background: Cell wall imaging can considerably permit direct visualization of the molecular architecture of cell walls and provide the detailed chemical information on wall polymers, which is imperative to better exploit and use the biomass polymers; however, detailed imaging and quantifying of the native composition and architecture in the cell wall remains challenging.Results: Here, we describe a label-free imaging technology, coherent Raman scattering microscopy (CRS), including coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy, which images the major structures and chemical composition of plant cell walls. The major steps of the procedure are demonstrated, including sample preparation, setting the mapping parameters, analysis of spectral data, and image generation. Applying this rapid approach, which will help researchers understand the highly heterogeneous structures and organization of plant cell walls.Conclusions: This method can potentially be incorporated into label-free microanalyses of plant cell wall chemical composition based on the in situ vibrations of molecules.



Author(s):  
Samir Medjekal ◽  
Mouloud Ghadbane

Sheep have a gastrointestinal tract similar to that of other ruminants. Their stomach is made up of four digestive organs: the rumen, the reticulum, the omasum and the abomasum. The rumen plays a role in storing ingested foods, which are fermented by a complex anaerobic rumen microbiota population with different types of interactions, positive or negative, that can occur between their microbial populations. Sheep feeding is largely based on the use of natural or cultivated fodder, which is exploited in green by grazing during the growth period of the grass and in the form of fodder preserved during the winter period. Ruminant foods are essentially of plant origin, and their constituents belong to two types of structures: intracellular constituents and cell wall components. Cellular carbohydrates play a role of metabolites or energy reserves; soluble carbohydrates account for less than 10% dry matter (DM) of foods. The plant cell wall is multi-layered and consists of primary wall and secondary wall. Fundamentally, the walls are deposited at an early stage of growth. A central blade forms the common boundary layer between two adjacent cells and occupies the location of the cell plate. Most of the plant cell walls consist of polysaccharides (cellulose, hemicellulose and pectic substances) and lignin, these constituents being highly polymerized, as well as proteins and tannins.



2011 ◽  
Vol 43 (7) ◽  
pp. 1544-1552 ◽  
Author(s):  
Gaylord Erwan Machinet ◽  
Isabelle Bertrand ◽  
Yves Barrière ◽  
Brigitte Chabbert ◽  
Sylvie Recous


Sign in / Sign up

Export Citation Format

Share Document