scholarly journals Fundamental Properties of Low Strength Concrete Mixture with Blast Furnace Slag and Sewage Sludge

Author(s):  
Chil Woo Kwon ◽  
Nam Gi Lim
2019 ◽  
Vol 968 ◽  
pp. 26-34
Author(s):  
Andriy M. Netesa ◽  
Nykolay I. Netesa ◽  
Anatoliy Valentinovitch Radkevich ◽  
Sergiy O. Yakovlev

The purpose of the research findings, given in article, is aimed to determine the rational compounds of concrete with an average cubic compressive strength less than 20 MPa with minimum required expenditures of cement. To reach the goal, mathematical planning of the experiment was used with variability of cement consumption from 90 to 190 kg / m3 in the compositions of the concrete mixture, and for the fine-grained filler from tails of processed ores, the consumption was like at 100 to 400 kg / m3. The result of processing experiments has shown us the dependences of the change in strength and coefficient of efficiency of the use of cement of the factors involved. Optimized values increase most intensively with minimum cement consumption and a change in the consumption of fine filler within the limits of the study. The highest coefficient of efficiency of use of cement is expressed by the ratio of the achieved strength per unit mass of used cement in the concrete mix and it was obtained at a cement consumption of 90 kg / m3 and a filler of 400 kg / m3. Using the obtained dependences of optimized values on the factors under study, the composition of concrete may be predicted with a strength up to 20 MPa with the required amount of filler.


2015 ◽  
Vol 1105 ◽  
pp. 26-30
Author(s):  
Martina Kovalcikova ◽  
Adriana Eštoková ◽  
Alena Luptáková

The hydraulic properties of granulated blast-furnace slags have been studied for nearly 200 years, and use of slag in mortars and concretes dates back more than a hundred years. The use of ground blast furnace slag, added as a replacement for a portion of the portland cement, has gained increasing acceptance in recent years. The effects of sulphur-oxidizing bacteria Acidithiobacillusthiooxidans on concrete mixture with addition of ground granulated blast furnace slag compared to mixture without any additives were investigated in laboratory over a period of 91 days. A laboratory study was conducted to comparison the performance of concrete samples in terms of a concrete deterioration influenced by the leaching of calcium compounds from the cement matrix. The changes in the elemental concentrations of calcium ions in leachates were measured by using X – ray fluorescence method. Experimental studies confirmed: bacteria Acidithiobacillus thiooxidans caused much intensive calcium release from the concrete matrices into the solution; the higher resistance of concrete mixture with 65 % wt. slag addition was not confirmed.


2021 ◽  
Vol 321 ◽  
pp. 119-124
Author(s):  
Lucia Osuská ◽  
Milan Meruňka ◽  
Rudolf Hela

For concrete constructions built as underground spaces, basements or cellars, it is necessary for these constructions to be able to resist the influence of groundwater pressure that could disrupt the compactness of the entire construction by its action. For this reason, constructions of so-called white boxes are often used. White boxes are concrete constructions whose main capability is high water impermeability, exhibiting at the same time minimal volume changes. These properties could be accomplished by a series of several technological precautions, one of which is the composition of the concrete mixture itself. The aim of this paper is to evaluate the influence of finely ground limestone and the latent hydraulic addition of finely ground blast furnace slag on the properties of concrete composite such as water impermeability, water absorption, or volume changes. These properties are vital for the construction of white boxes. In this paper, the suitability of the mutual combination of active and internal additive will also be evaluated.


Sign in / Sign up

Export Citation Format

Share Document