scholarly journals Three Dimension Scanning using 
Infrared Coded Light

2020 ◽  
Vol 19 (2) ◽  
pp. 46-52
Author(s):  
Liew Wei Li ◽  
Khairul Hamimah Abas

In this competitive market, reverse engineering is introduced to shorten a new product development time by digitizing an existing product for rapid redesign. In this project, a low cost and standalone 3D scanner is being developed to achieve this purpose. Research is done comparing advantages and limitation of different hardware and method for 3D scanning. Scanner is assisted by automated rotating and illumination scanning platform to improve its performance. Software is developed for scanning of object using a Red-Green-Blue-Depth (RGBD) camera. The scanned result is processed and refined using global and local registration method. Poisson surface reconstruction is performed on the processed point clouds for generating triangular mesh. This scanner able to scan the object with the accuracy up to 5mm with computational time around 25 minutes.

2021 ◽  
Vol 10 (8) ◽  
pp. 525
Author(s):  
Wenmin Yao ◽  
Tong Chu ◽  
Wenlong Tang ◽  
Jingyu Wang ◽  
Xin Cao ◽  
...  

As one of China′s most precious cultural relics, the excavation and protection of the Terracotta Warriors pose significant challenges to archaeologists. A fairly common situation in the excavation is that the Terracotta Warriors are mostly found in the form of fragments, and manual reassembly among numerous fragments is laborious and time-consuming. This work presents a fracture-surface-based reassembling method, which is composed of SiamesePointNet, principal component analysis (PCA), and deep closest point (DCP), and is named SPPD. Firstly, SiamesePointNet is proposed to determine whether a pair of point clouds of 3D Terracotta Warrior fragments can be reassembled. Then, a coarse-to-fine registration method based on PCA and DCP is proposed to register the two fragments into a reassembled one. The above two steps iterate until the termination condition is met. A series of experiments on real-world examples are conducted, and the results demonstrate that the proposed method performs better than the conventional reassembling methods. We hope this work can provide a valuable tool for the virtual restoration of three-dimension cultural heritage artifacts.


2017 ◽  
Vol 9 (18) ◽  
Author(s):  
Jesús Gerardo Cruz Álvarez

Abstract. The aim of this study is to discuss new product development based on a traditional stage-gate process and to examine how new product development [NPD] tools, such as lean design for Six Sigma, can accelerate the achievement of the main goals of NPD: reliable product quality, cost-effective implementation, and desired time-to-market. These new tools must be incorporated into a new approach to NPD based on the Advanced Product and Quality Planning methodology.Keywords: analysis of variance (ANOVA), design for Six Sigma, DMAIC, industrialexperimentation, robust designResumen. El objetivo de la presente investigación es la promoción de una discusión teórica y practica sobre el enfoque tradicional de lanzamiento de nuevos productos bajo la metodología por fases. Una revisión a profundidad cómo las nuevas herramientas del desarrollo de nuevos productos en lo particular el diseño para seis sigma puede acelerar el tiempo de respuesta al mercado de forma exitosa y a una relación atractiva de costo – beneficio. Las nuevas herramientas pueden ser incorporadas dentro de la estrategia dedesarrollo de nuevos productos bajo el enfoque de planeación avanzada de la calidad de nuevos productos.Palabras clave: análisis de varianza, diseño para seis sigma, diseño robusto,experimentación industrial, metodología DMAIC


2004 ◽  
Vol 20 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Janez Kus̆ar ◽  
Joz̆e Duhovnik ◽  
Janez Grum ◽  
Marko Starbek

Author(s):  
Zihan Liu ◽  
Guanghong Gong ◽  
Ni Li ◽  
Zihao Yu

Three-dimensional (3D) reconstruction of a human head with high precision has promising applications in scientific research, product design and other fields. However, it still faces resistance from two factors. One is inaccurate registration caused by symmetrical distribution of head feature points, and the other is economic burden due to high-accuracy sensors. Research on 3D reconstruction with portable consumer RGB-D sensors such as the Microsoft Kinect has been highlighted in recent years. Based on our multi-Kinect system, a precise and low-cost three-dimensional modeling method and its system implementation are introduced in this paper. A registration method for multi-source point clouds is provided, which can reduce the fusion differences and reconstruct the head model accurately. In addition, a template-based texture generation algorithm is presented to generate a fine texture. The comparison and analysis of our experiments show that our method can reconstruct a head model in an acceptable time with less memory and better effect.


Author(s):  
V. Petras ◽  
A. Petrasova ◽  
J. Jeziorska ◽  
H. Mitasova

Today’s methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV) imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM), and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM). Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL), Point Cloud Library (PCL), and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.


Author(s):  
V. Petras ◽  
A. Petrasova ◽  
J. Jeziorska ◽  
H. Mitasova

Today’s methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV) imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM), and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM). Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL), Point Cloud Library (PCL), and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.


2020 ◽  
pp. 1063293X2096792
Author(s):  
Lidija Rihar ◽  
Tena Žužek ◽  
Janez Kušar

Today, three conditions are crucial for a company to be competitive on the market: quality, reduced time and low costs for the development of new products. The paper shows how companies developing new products (NPD) for the market can successfully implement concurrent engineering as an improvement of project management, in order to reduce product development time and costs and to ensure the quality expected by customers. The methodology presented in this paper is based on three main pillars of knowledge: project management, teamwork and concurrent engineering. The methodology provides a step-by-step guideline for the introduction of concurrent engineering in a company. This paper also presents the results of 10 Slovenian companies where this methodology has been tested on 20 pilot projects. The results show that managed projects upgraded with the principles of concurrent engineering lead to cost reduction, shorter development time and fewer discrepancies.


Sign in / Sign up

Export Citation Format

Share Document