Development of Neural Network Models for a Crude Oil Distillation Column

2012 ◽  
Author(s):  
Khairiyah Mohd. Yusof ◽  
Fakhri Karray ◽  
Peter L. Douglas

This paper discusses the development of artificial neural network (ANN) models for a crude oil distillation column. Since the model is developed for real time optimisation (RTO) applications they are steady state, multivariable models. Training and testing data used to develop the models were generated from a reconciled steady-state model simulated in a process simulator. The radial basis function networks (RBFN), a type of feedforward ANN model, were able to model the crude tower very well, with the root mean square error for the prediction of each variable less than 1%. Grouping related output variables in a network model was found to give better predictions than lumping all the variables in a single model; this also allowed the overall complex, multivariable model to be simplified into smaller models that are more manageable. In addition, the RBFN models were also able to satisfactorily perform range and dimensional extrapolation, which is necessary for models that are used in RTO.

2016 ◽  
pp. 368-395
Author(s):  
Eliano Pessa

The Artificial Neural Network (ANN) models gained a wide popularity owing to a number of claimed advantages such as biological plausibility, tolerance with respect to errors or noise in the input data, learning ability allowing an adaptability to environmental constraints. Notwithstanding the fact that most of these advantages are not typical only of ANNs, engineers, psychologists and neuroscientists made an extended use of ANN models in a large number of scientific investigations. In most cases, however, these models have been introduced in order to provide optimization tools more useful than the ones commonly used by traditional Optimization Theory. Unfortunately, just the successful performance of ANN models in optimization tasks produced a widespread neglect of the true – and important – objectives pursued by the first promoters of these models. These objectives can be shortly summarized by the manifesto of connectionist psychology, stating that mental processes are nothing but macroscopic phenomena, emergent from the cooperative interaction of a large number of microscopic knowledge units. This statement – wholly in line with the goal of statistical mechanics – can be readily extended to other processes, beyond the mental ones, including social, economic, and, in general, organizational ones. Therefore this chapter has been designed in order to answer a number of related questions, such as: are the ANN models able to grant for the occurrence of this sort of emergence? How can the occurrence of this emergence be empirically detected? How can the emergence produced by ANN models be controlled? In which sense the ANN emergence could offer a new paradigm for the explanation of macroscopic phenomena? Answering these questions induces to focus the chapter on less popular ANNs, such as the recurrent ones, while neglecting more popular models, such as perceptrons, and on less used units, such as spiking neurons, rather than on McCulloch-Pitts neurons. Moreover, the chapter must mention a number of strategies of emergence detection, useful for researchers performing computer simulations of ANN behaviours. Among these strategies it is possible to quote the reduction of ANN models to continuous models, such as the neural field models or the neural mass models, the recourse to the methods of Network Theory and the employment of techniques borrowed by Statistical Physics, like the one based on the Renormalization Group. Of course, owing to space (and mathematical expertise) requirements, most mathematical details of the proposed arguments are neglected, and, to gain more information, the reader is deferred to the quoted literature.


Author(s):  
Agus Saptoro ◽  
Moses O. Tadé ◽  
Hari Vuthaluru

Abstract This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on Mahalanobis distance), to divide the data into training and testing subsets for developing artificial neural network (ANN) models. This method is a modified version of the Kennard-Stone (KS) algorithm. With this method, better data splitting, in terms of data representation and enhanced performance of developed ANN models, can be achieved. Compared with standard KS algorithm and another improved KS algorithm (data division based on joint x - y distances (SPXY) method), the proposed method has also shown a better performance. Therefore, the proposed technique can be used as an advantageous alternative to other existing methods of data splitting for developing ANN models. Care should be taken when dealing with large amount of dataset since they may increase the computational load for MDKS due to its variance-covariance matrix calculations.


2020 ◽  
Vol 87 (8) ◽  
Author(s):  
Xin Liu ◽  
Fei Tao ◽  
Haodong Du ◽  
Wenbin Yu ◽  
Kailai Xu

Abstract Artificial neural network (ANN) models are used to learn the nonlinear constitutive laws based on indirectly measurable data. The real input and output of the ANN model are derived from indirect data using a mechanical system, which is composed of several subsystems including the ANN model. As the ANN model is coupled with other subsystems, the input of the ANN model needs to be determined during the training. This approach integrates measurable data, mechanics, and ANN models so that the ANN models can be trained without direct data which is usually not available from experiments. Two examples are provided as an illustration of the proposed approach. The first example uses two-dimensional (2D) finite element (FE) analysis to train an ANN model to learn the nonlinear in-plane shear constitutive law. The second example applies a continuum damage model to train an ANN model to learn the damage accumulation law. The results show that the trained ANN models achieve great accuracy based on the proposed approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Khandaker M. A. Hossain

This paper describes the ability of artificial neural network (ANN) models to simulate the pollutant dispersion characteristics in varying urban atmospheres at different regions. ANN models are developed based on twelve meteorological (including rainfall/precipitation) and six traffic parameters/variables that have significant influence on emission/pollutant dispersion. The models are trained to predict concentration of carbon monoxide and particulate matters in urban atmospheres using field meteorological and traffic data. Training, validation, and testing of ANN models are conducted using data from the Dhaka city of Bangladesh. The models are used to simulate concentration of pollutants as well as the effect of rainfall on emission dispersion throughout the year and inversion condition during the night. The predicting ability and robustness of the models are then determined by using data of the coastal cities of Chittagong and Dhaka. ANN models based on both meteorological and traffic variables exhibit the best performance and are capable of resolving patterns of pollutant dispersion to the atmosphere for different cities.


Author(s):  
Eliano Pessa

The Artificial Neural Network (ANN) models gained a wide popularity owing to a number of claimed advantages such as biological plausibility, tolerance with respect to errors or noise in the input data, learning ability allowing an adaptability to environmental constraints. Notwithstanding the fact that most of these advantages are not typical only of ANNs, engineers, psychologists and neuroscientists made an extended use of ANN models in a large number of scientific investigations. In most cases, however, these models have been introduced in order to provide optimization tools more useful than the ones commonly used by traditional Optimization Theory. Unfortunately, just the successful performance of ANN models in optimization tasks produced a widespread neglect of the true – and important – objectives pursued by the first promoters of these models. These objectives can be shortly summarized by the manifesto of connectionist psychology, stating that mental processes are nothing but macroscopic phenomena, emergent from the cooperative interaction of a large number of microscopic knowledge units. This statement – wholly in line with the goal of statistical mechanics – can be readily extended to other processes, beyond the mental ones, including social, economic, and, in general, organizational ones. Therefore this chapter has been designed in order to answer a number of related questions, such as: are the ANN models able to grant for the occurrence of this sort of emergence? How can the occurrence of this emergence be empirically detected? How can the emergence produced by ANN models be controlled? In which sense the ANN emergence could offer a new paradigm for the explanation of macroscopic phenomena? Answering these questions induces to focus the chapter on less popular ANNs, such as the recurrent ones, while neglecting more popular models, such as perceptrons, and on less used units, such as spiking neurons, rather than on McCulloch-Pitts neurons. Moreover, the chapter must mention a number of strategies of emergence detection, useful for researchers performing computer simulations of ANN behaviours. Among these strategies it is possible to quote the reduction of ANN models to continuous models, such as the neural field models or the neural mass models, the recourse to the methods of Network Theory and the employment of techniques borrowed by Statistical Physics, like the one based on the Renormalization Group. Of course, owing to space (and mathematical expertise) requirements, most mathematical details of the proposed arguments are neglected, and, to gain more information, the reader is deferred to the quoted literature.


2016 ◽  
Vol 78 (6-13) ◽  
Author(s):  
Nur Fazirah Jumari ◽  
Khairiyah Mohd-Yusof

One of the major challenges in polymerization industry is the lack of online instruments to measure polymer end-used properties such as xylene soluble, particle size distribution and melt flow index (MFI). As an alternative to the online instruments and conventional laboratory tests, these properties can be estimated using model based-soft sensor. This paper presents models for soft sensors to measure MFI in industrial polypropylene loop reactors using artificial neural network (ANN) model, serial hybrid neural network (HNN) model and stacked neural network (SNN) model. All models were developed and simulated in MATLAB. The simulation results of the MFI based on the ANN, HNN, and SNN models were compared and analyzed.  The MFI was divided into three grades, which are A (10-12g/10 min), B (12-14g/10 min) and C (14-16 g/10 min). The HNN model is the best model in predicting all range of MFI with the lowest root mean square error (RMSE) value, 0.010848, followed by ANN model (RMSE=0.019366) and SNN model (RMSE=0.059132). The SNN model is the best model when tested with each grade of the MFI. It has shown lowest RMSE value for each type of MFI (0.012072 for MFI A, 0.017527 for MFI B and 0.015287 for MFI C), compared to HNN model (0.014916 for MFI A, 0.041402 for MFI B and 0.046437 for MFI C) and ANN model (0.015156 for MFI A, 0.076682 for MFI B, and 0.037862 for MFI C).


2000 ◽  
Author(s):  
R. L. Mahajan

Abstract An artificial neural network (ANN) is a massively parallel, dynamic system of processing elements, neurons, which are connected in complicated patterns to allow for a variety of interactions among the inputs to produce the desired output. It has the ability to learn directly from example data rather than by following the programmed rules based on a knowledge base. There is virtually no limit to what an ANN can predict or decipher, so long as it has been trained properly through examples which encompass the entire range of desired predictions. This paper provides an overview of such strategies needed to build accurate ANN models. Following a general introduction to artificial neural networks, the paper will describe different techniques to build and train ANN models. Step-by-step procedures will be described to demonstrate the mechanics of building neural network models, with particular emphasis on feedforward neural networks using back-propagation learning algorithm. The network structure and pre-processing of data are two significant aspects of ANN model building. The former has a significant influence on the predictive capability of the network [1]. Several studies have addressed the issue of optimal network structure. Kim and May [2] use statistical experimental design to determine an optimal network for a specific application. Bhat and McAvoy [3] propose a stripping algorithm, starting with a large network and then reducing the network complexity by removing unnecessary weights/nodes. This ‘complex-to-simple’ procedure requires heavy and tedious computation. Villiers and Bernard [4] conclude that although there is no significant difference between the optimal performance of one or two hidden layer networks, single layer networks do better classification on average. Marwah et al. [5] advocate a simple-to-complex methodology in which the training starts with the simplest ANN structure. The complexity of the structure is incrementally stepped-up till an acceptable learning performance is obtained. Preprocessing of data can lead to substantial improvements in the training process. Kown et al. [6] propose a data pre-processing algorithm for a highly skewed data set. Marwah et al. [5] propose two different strategies for dealing with the data. For applications with a significant amount of historical data, smart select methodology is proposed that ensures equal weighted distribution of the data over the range of the input parameters. For applications, where there is scarcity of data or where the experiments are expensive to perform, a statistical design of experiments approach is suggested. In either case, it is shown that dividing the data into training, testing and validation ensures an accurate ANN model that has excellent predictive capabilities. The paper also describes recently developed concepts of physical-neural network models and model transfer techniques. In the former, an ANN model is built on the data generated through the ‘first-principles’ analytical or numerical model of the process under consideration. It is shown that such a model, termed as a physical-neural network model has the accuracy of the first-principles model but yet is orders of magnitude faster to execute. In recognition of the fact that such a model has all the approximations that are generally inherent in physical models for many complex processes, model transfer techniques have been developed [6] that allow economical development of accurate process equipment models. Examples from thermally-based materials processing will be described to illustrate the application of the basic concepts involved.


2014 ◽  
Vol 6 (2) ◽  
pp. 42-42
Author(s):  
A. S. M. Asifur Rahman ◽  
Rafiqul A. Tarefder

This study compares laboratory dynamic modulus value of Superpave mixes with the dynamic modulus obtained from Long Term Pavement Performance (LTPP) database. The comparison shows that the dynamic modulus from LTPP database, which were determined by using different types of artificial neural network (ANN) models, differs from the laboratory tested dynamic modulus. The dynamic modulus data of five LTPP test sections are considered. Mixes similar to those five sections were collected from the field and tested in the laboratory. Based on the findings of this study, it can be said that dynamic modulus from ANN models are less than the laboratory dynamic modulus for New Mexico Superpave mixes. Therefore, as an important design parameter, the use of dynamic modulus predicted from Neural Network models can result in outcomes different from those using laboratory dynamic modulus.


Author(s):  
Elena Slavutskaya ◽  
Leonid Slavutskii

The use of the artificial neural network (ANN) models for vertical system analysis of psycho-diagnostic data is suggested. It is shown that the ANN training, as the problem of nonlinear multi-parameter optimization, allows to create effective algorithms for the psycho-diagnostic data processing when the results of psychological testing for the different level’s characteristics have different numerical scales. On the example of processing the author's data of psycho-diagnostics (preadolescent schoolchildren), it is shown that neural network models can be used to estimate latent (hidden) connections between psychological characteristics. The proposed algorithms are based on a statistical assessment of the quality of such models, do not require a large sample of respondents. The quantitative statistical criteria for evaluating the quality of the models are estimated. The approach is sufficiently clear for practical use by psychologists who do not have a special mathematical preparation.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Tahmineh Adili ◽  
Zohreh Rostamnezhad ◽  
Ali Chaibakhsh ◽  
Ali Jamali

Burner failures are common abnormal conditions associated with industrial fired heaters. Preventing from economic loss and major equipment damages can be attained by compensating the lost heat due to burners’ failures, which can be possible by defining appropriate setpoints to rearrange the firing rates for healthy burners. In this study, artificial neural network models were developed for estimating the appropriate setpoints for the combustion control system to recover an industrial fired-heater furnace from abnormal conditions. For this purpose, based on an accurate high-order mathematical model, constrained nonlinear optimization problems were solved using the genetic algorithm. For different failure scenarios, the best possible excess firing rates for healthy burners to recover the furnace from abnormal conditions were obtained and data were recorded for training and testing stages. The performances of the developed neural steady-state models were evaluated through simulation experiments. The obtained results indicated the feasibility of the proposed technique to deal with the failures in the combustion system.


Sign in / Sign up

Export Citation Format

Share Document