Luminescence Properties of Dy3+ and Sm3+: Potassium Lithium Borate Glass

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Haydar Aboud ◽  
H. Wagiran ◽  
R. Hussin

The present paper describes the spectral properties of Sm3+ (0.4 mol%) and Dy3+ (0.4 mol%) ions-doped 20Li2O–10K2O–70B2O3 glasses. X-ray diffraction method was use to confirm the amorphous phase of samples. The physical properties have been determined based on UV absorption spectra. The hypersensitive transition of Dy3+ and Sm3+ is found due to transition of (6F11/2,6H9/2) and (6F7/2), respectively. The emission bands of Dy3+: glass has shown around 572 nm, 612 nm and 646 nm; these emissions are attributed to the transitions of 4F9/2 ®6H15/2 (yellow), 4F9/2 - 6H13/2 (red) and 4F9/2 -6H11/2 (red). With regard to Sm3+: glass has three emission bands those have been generated from 4G5/2 ® 6H5/2 (616 nm), 4G5/2 ® 6H 7/2 (660 nm) and 4G5/2 ® 6H9/2 (719 nm) transitions. The current results promise several applications in optical fields such as UV-sensor, developing new color light sources and tunable visible lasers.

2016 ◽  
Vol 42 (5) ◽  
pp. 453-457 ◽  
Author(s):  
V. V. Sinitsyn ◽  
B. S. Red’kin ◽  
V. I. Orlov ◽  
O. F. Shakhlevich ◽  
N. N. Kolesnikov

Author(s):  
I. Kashif ◽  
A. Ratep ◽  
S. Ahmed

<p><span>Lithium borate glass samples mixed with a different concentration of Sm<sup>3</sup>+ and Nd<sup>3+</sup> ions organized by quenching technique. Structural, vibration groups and spectral properties of glass samples investigated using X-ray diffraction, FTIR, UV/Vis/NIR and photoluminescence spectroscopy. The X-ray confirmed the lithium borate glass samples containing Sm<sup>3+</sup> and Nd<sup>3+</sup> ions in the amorphous state. Luminescence spectra of glass samples excited at 400 nm recorded, here three luminescence bands observed in Visible region, which due to spectra materials (Sm3+, Nd3+). These indicate that these glass samples responsible orange emission and used in the improvement of materials for LED, and optical devices. The functional vibration groups of the glass matrix studied using FTIR spectroscopy.</span></p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Durga Sankar Vavilapalli ◽  
Ambrose A. Melvin ◽  
F. Bellarmine ◽  
Ramanjaneyulu Mannam ◽  
Srihari Velaga ◽  
...  

AbstractIdeal sillenite type Bi12FeO20 (BFO) micron sized single crystals have been successfully grown via inexpensive hydrothermal method. The refined single crystal X-ray diffraction data reveals cubic Bi12FeO20 structure with single crystal parameters. Occurrence of rare Fe4+ state is identified via X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The lattice parameter (a) and corresponding molar volume (Vm) of Bi12FeO20 have been measured in the temperature range of 30–700 °C by the X-ray diffraction method. The thermal expansion coefficient (α) 3.93 × 10–5 K−1 was calculated from the measured values of the parameters. Electronic structure and density of states are investigated by first principle calculations. Photoelectrochemical measurements on single crystals with bandgap of 2 eV reveal significant photo response. The photoactivity of as grown crystals were further investigated by degrading organic effluents such as Methylene blue (MB) and Congo red (CR) under natural sunlight. BFO showed photodegradation efficiency about 74.23% and 32.10% for degrading MB and CR respectively. Interesting morphology and microstructure of pointed spearhead like BFO crystals provide a new insight in designing and synthesizing multifunctional single crystals.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 753
Author(s):  
Dmitriy Shlimas ◽  
Artem L. Kozlovskiy ◽  
Maxim Zdorovets

The interest in lithium-containing ceramics is due to their huge potential as blanket materials for thermonuclear reactors for the accumulation of tritium. However, an important factor in their use is the preservation of the stability of their strength and structural properties when under the influence of external factors that determine the time frame of their operation. This paper presents the results of a study that investigated the influence of the LiTiO2 phase on the increasing resistance to degradation and corrosion of Li2TiO3 ceramic when exposed to aggressive acidic media. Using the X-ray diffraction method, it was found that an increase in the concentration of LiClO4·3H2O during synthesis leads to the formation of a cubic LiTiO2 phase in the structure as a result of thermal sintering of the samples. During corrosion tests, it was found that the presence of the LiTiO2 phase leads to a decrease in the degradation rate in acidic media by 20–70%, depending on the concentration of the phase. At the same time, and in contrast to the samples of Li2TiO3 ceramics, for which the mechanisms of degradation during a long stay in aggressive media are accompanied by large mass losses, for the samples containing the LiTiO2 phase, the main degradation mechanism is pitting corrosion with the formation of pitting inclusions.


1990 ◽  
Vol 7 (7) ◽  
pp. 308-311
Author(s):  
Li Chaorong ◽  
Mai Zhenhong ◽  
Cui Shufan ◽  
Zhou Junming ◽  
Yutian Wang

1951 ◽  
Vol 22 (5) ◽  
pp. 665-672 ◽  
Author(s):  
Alfred J. Reis ◽  
Jerome J. Slade ◽  
Sigmund Weissmann

Sign in / Sign up

Export Citation Format

Share Document