The Effects of Nanoparticle Addition in Bi-2212 Superconductors

2014 ◽  
Vol 69 (2) ◽  
Author(s):  
M. A. Suazlina ◽  
S. Y. S. Yusainee ◽  
H. Azhan ◽  
R. Abd-Shukor ◽  
R. M. Mustaqim

The effect of Y2O3 nanoparticle addition on the superconducting properties of Bi1.6Pb0.4Sr 2CaCu 2Oy have been investigated. The samples were prepared using high purity oxide powders via solid state reaction method. Y2O3 nanoparticle with 0.0-1.0 wt. % was systematically added to the well balanced Bi1.6Pb0.4 Sr2CaCu2Oy before sinter in order to trace the existense of nanoparticle addition in the system. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and critical current density, Jc. The current density measurement was done via four-point probe method under zero magnetic fields. The critical current density, Jc and superconductivity transition temperature, Tc for sample with addition of Y2O3 nanoparticle were found to be higher than the pure sample. The optimal addition of Y2O3 nanoparticle to the sample Bi-2212 system was found at 0.7 wt. %. The crystallographic structure of all samples was evidenced to be orthorhombic where a ≠ b ≠ c. Changes in superconducting properties of Y2O3 nanoparticle added Bi-2212 system were discussed.

2020 ◽  
Vol 301 ◽  
pp. 202-208
Author(s):  
E.S. Nurbaisyatul ◽  
H. Azhan ◽  
Kasim Azman ◽  
Norazila Ibrahim ◽  
Siti Fatimah Saipuddin

The sample with nominal composition of Bi1.6Pb0.4Sr2Ca2-xEuxCu3Oy where x = 0.000, 0.0025, 0.020, 0.050 and 0.100 were synthesized through solid state reaction method. The effect of Eu2O3 nanoparticles doping on the superconducting and structural properties were studied by means of critical temperature, TC, critical current density, JC, X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The amount of 2223 phase gradually decreased with the increment of Eu concentration which indicates that Eu nanoparticles substitution at Ca site favours the growth of 2212 phases. The sample with higher porosity was found to be decreased in critical temperature, TC as well as critical current density, JC due to the lack of effective surface area for current flowing. The best superconducting properties were observed at x = 0.0025 substitutes into Ca site for Bi (Pb)-2223 host sample.


2015 ◽  
Vol 1107 ◽  
pp. 601-605
Author(s):  
S.A. Senawi ◽  
H. Azhan ◽  
W.N.F.W. Zainal ◽  
W.A.W. Razali ◽  
A. Nazree ◽  
...  

This paper reports on the properties of YBa2Cu3Od (Y123) and YCaBa4Cu6Oy (Y146) with non-porous and porous structures. The relationship between calcium doping and critical temperature (Tc) was studied to determine the optimal superconducting properties. A series of heating and grinding via solid state reaction method was used to fabricate the ceramic materials. The electrical properties were investigated via critical temperature, TC and critical current density, JC using the resistivity measurement system (RMS). Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) were used to analyze the material morphology and structure, respectively. The orthorhombicity increased due to less porosity of the samples. The calcium presence partially replaced larger Ba(II) site and degraded orthorhombicity. The highest critical current density (JC) was porous YCaBa2Cu3Oy which was 2.32 A/cm2 compared to 0.75 A/cm2 for porous YCaBa4Cu6Oy at 60 K. The critical temperature for porous structure was less than non porous structure for Ca doped Y146 system which was 69.9 K and 67.9 K. SEM micrograph unveiled that the Jc was induced significantly by continuity of grain formation via grain size. Pores homogenized the grains surface quality and connectivity due to strain release thus increasing effective cross section of the sample for current density (Jc) over the vast areas.


2015 ◽  
Vol 1107 ◽  
pp. 616-621
Author(s):  
M. Robaiah ◽  
H. Azhan ◽  
K. Azman ◽  
I.N. Syuhaida ◽  
C.M.N. Azura ◽  
...  

The effects of sintering time in high and low density Bi-2223 phase formation have been investigated. The samples were prepared by the solid-state reaction method at various sintering times ranging from 24, 48, 72 and 96 hours. Sucrose was added during palletization and after heated at 400°C for two hours the sucrose was removed and hence low density sample was created. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and critical current density. The transition temperature varies between 102 K and 96 K with increasing of sintering times. The optimal sintering time of the samples Bi-2223 system was found at 850°C for 72 hours. The critical current density,JCof high density and low density Bi-2223 was measured to be 7.547 A/cm2and 8.333 A/cm2respectively at 77 K under zero magnetic field. The critical current density,JCand superconductivity transition temperature,TCof low density were found to be higher than the pure samples. The critical transition temperature increased with a short gap betweenTConsetandTC zero. The most intense peak in the XRD pattern of sample at sintering time 72 hours belong to the high-TCphase which also indicates an increase in the volume fraction of the high-TCphase with optimum sintering time.


2014 ◽  
Vol 895 ◽  
pp. 105-108 ◽  
Author(s):  
Siti Nurdalila Abd-Ghani ◽  
Hon Kah Wye ◽  
Ing Kong ◽  
Roslan Abd-Shukor ◽  
Wei Kong

The effects of NiO nanoparticles addition in YBa2Cu3O7-δ (YBCO) superconductors had been investigated. YBCO superconductor powders were prepared by using high purity oxide powders via solid state reaction method. 0.01 0.05 wt.% of NiO nanoparticles were added into YBCO. The critical temperature (Tc) and transport critical current density (Jc) were determined by using four point probe method. The lattice parameters and morphology of the samples were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. Tc of YBCO increased from 84 K to 87 K with 0.02 wt.% of NiO nanoparticles addition. The addition on NiO nanoparticles have significantly enhanced transport critical current density of YBCO by acting as flux pinning centers. YBCO with 0.03 wt.% of NiO nanoparticles performed the highest Jcup to 1265 mA/cm2 among the NiO-added samples. However, excessive addition of NiO nanoparticles in YBCO caused degradation in Tc and Jc.


2012 ◽  
Vol 501 ◽  
pp. 294-298 ◽  
Author(s):  
A.W. Norazidah ◽  
H. Azhan ◽  
K. Azman ◽  
H.N. Hidayah ◽  
J.S. Hawa

The influence of calcium substitution at the barium site of porous Y(Ba1-xCax)2Cu3Oδ (x= 0.00, 0.10, 0.20 and 0.30) samples prepared via solid-state reaction method have been investigated. The structure, morphology, critical temperature and critical current were determined by x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and four-point probe method, respectively. Generally, the curves of normalized resistance for all samples displayed normal metallic behavior above Tc onset. The Tc zero was between 84 K and 71 K with increase in Ca concentration corresponding to a small change of carrier concentration. The critical current density, Jc decreases with increase in Ca concentration. The highest Jc of 2.657 A/cm2 at 50 K was obtained in Ca-free porous YBCO which is higher than that of Ca-free non porous YBCO. Further substitution of Ca at Ba site decreased Jc monotonously. The increase of Ca concentration decreased the volume of unit cell but the crystallographic structure remains in the orthorhombic form where a≠b≠c. The grains are highly compacted and randomly distributed while the grain size decreased as the Ca concentration increased.


2012 ◽  
Vol 501 ◽  
pp. 299-303 ◽  
Author(s):  
H.N. Hidayah ◽  
S.Y.S. Yahya ◽  
H. Azhan ◽  
K. Azman ◽  
J.S. Hawa ◽  
...  

The effect of Ca substitution in Y1-xCaxBa2Cu3O7 superconductor prepared via co-precipitation method has been investigated. The concentration of Ca substitution was varied from x = 0.05 to x = 0.20. The samples were characterized using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (SEM), resistivity measurement and current density measurement (without magnetic field). The critical temperature of the samples decreased as the concentration of Ca be increased whereby the highest value of critical temperature (Tc zero) was 83 K at x = 0.05. The crystallographic structure of pure sample was evidenced to be orthorhombic form where a ≠ b ≠ c.. At x = 0.10, the microstructure showed an improvement in grain alignment compared to other Ca concentration. The critical current density (Jc) increased with Ca concentration. The value of Jc for x = 0.05 at 50 K and 60 K was 1.51 A/cm2 and 1.00 A/cm2, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Nur Jannah Azman ◽  
Huda Abdullah ◽  
Roslan Abd-Shukor

The effect of different nanosized Co3O4(10, 30, and 50 nm) addition on the Bi1.6Pb0.4Sr2Ca2Cu3O10(Co3O4)xsuperconductor withx=0–0.05 wt.% has been investigated using X-ray diffraction method, scanning electron microscopy, transition temperature, and critical current densityJcmeasurements. The samples were prepared by the conventional solid-state reaction method. Samples withx=0.01 wt.% Co3O4(10 nm) showed the highestTc-zeroat 102 K. The highestJcwas observed in thex=0.03 wt.% Co3O4(10 nm) andx=0.02 wt.% Co3O4(30 nm) samples. At 77 K,Jcof the 10 nm and 30 nm Co3O4added samples was 6 and 13 times larger than the nonadded samples, respectively. Small addition of Co3O4nanoparticles in the Bi1.6Pb0.4Sr2Ca2Cu3O10(Bi-2223) samples enhanced the critical current density and the phase formation. The larger Co3O4nanoparticle (50 nm) had a greater degradation affect on superconductivity of the Bi-2223 phase.


2011 ◽  
Vol 324 ◽  
pp. 241-244 ◽  
Author(s):  
R. Mawassi ◽  
R. Awad ◽  
Mohamad Roumie ◽  
M. Kork ◽  
I. Hassan

The major limitation of Bi-system superconductor applications is the intergrain weak links and weak flux pinning capability producing low critical current density of the Bibased phases. In order to enhance these characteristics and other superconducting properties, effective flux pinning centers are introduced into high temperature superconductors. In this work, different weight percentages of ZnO nano oxide were introduced at the final stage of the Bi1.8Pb0.4Sr2Ca2Cu3O10-y superconductor preparation process. Phase characterization was completed by X-ray diffraction (XRD). Exact constitution of the samples was determined using particle induced X-ray emission (PIXE). Granular and microstructure were investigated using scanning electron microscopy (SEM). Electrical resistivity as function of the temperature was carried to evaluate the relative performance of samples, and finally, E-J characteristic curves were obtained at 77K. Using 0.4 ZnO weight percentage, the electrical and granular properties were greatly enhanced, indicating more efficient pinning mechanisms. A critical current density of 949 A/cm2 was obtained which represents more than twice the value obtained for the pure sample (Jc= 445 A/cm2).


2010 ◽  
Vol 117 ◽  
pp. 63-68 ◽  
Author(s):  
Krishnankutty Vinod ◽  
Syamaprasad Upendran

The present study focuses on the preparation of good quality MgB2 superconductor in bulk, wire/tape forms and on the improvement of in-field critical current density [JC(H)]. MgB2 bulk superconductor was prepared by a simple Powder-In-Sealed-Tube (PIST) method and MgB2 wires and tapes were prepared by the Powder-In-Tube (PIT) method. A novel electrical self-heating method was introduced for the preparation of Fe sheathed MgB2 wires and tapes. Burned Rice Husk (BRH), an inexpensive natural material is found to be one of the best additives for enhancing the in-field critical current density of MgB2. By selecting suitable combinations of additives a significant enhancement of the critical current density by 1-2 orders of magnitude were achieved for fields > 5 T, at 5-15 K.


2020 ◽  
Vol 981 ◽  
pp. 59-65
Author(s):  
Muhammad Hafiz Mazwir ◽  
Bryan Andrew Balasan ◽  
Farah Hanani Zulkifli ◽  
Roslan Abd-Shukor

Effect of complex magnetic oxide Co0.5Ni0.5Fe2O4 (CNFO) nanoparticles addition in (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223) superconductor tapes was investigated. Ultrafine Bi-2223 powder precursor was prepared via co-precipitation method and was added with 0.01 – 0.05 wt.% Co0.5Ni0.5Fe2O4 nanoparticles during the final heating stage. The sample with 0.01 wt.% addition, Bi-2223(CNFO)0.01 was found to have the highest critical current density, Jc. This sample were then chosen to be fabricated into Ag-sheathed superconductor tapes using the powder-in-tube (PIT) method. The tapes were sintered for 50 and 100 h at 845 °C. The phase, microstructure and Jc of the samples were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and four point probe, respectively. Jc of Ag-sheathed Bi-2223(CNFO)0.01 tapes sintered for 100 h was 19830 A/cm2 at 30 K and 3970 A/cm2 at 77 K compared to tapes without addition which showed a much lower Jc(6370 A/cm2 at 30 K). This study showed that CNFO nanoparticles could act as an effective flux pinning centers to enhance the critical current density in the Bi-2223 superconductor.


Sign in / Sign up

Export Citation Format

Share Document