Cr Doped TiO2 Supported on TUD-1 Photocatalyst for Dye Photodegradation

2014 ◽  
Vol 69 (5) ◽  
Author(s):  
Ooi Yee Khai ◽  
Leny Yuliati ◽  
Siew Ling Lee

New visible light driven photocatalysts of 1 mol% Cr doped TiO2 supported on TUD-1 have been successfully synthesized. The Cr-TiO2/xTUD-1 (x = 10, 20, 30, 40 and 50) photocatalysts were prepared via surfactant-free sol-gel method followed by wet impregnation procedures. XRD analysis revealed that both TiO2 and Cr were incorporated in the highly porous siliceous matrix. FTIR analysis showed the existence of Si-O-Ti in all the materials. As observed, tetrahedral-coordinated Ti species were dominant in Cr-TiO2/10TUD-1, Cr-TiO2/20TUD-1 and Cr-TiO2/30TUD-1. Meanwhile, octahedral- coordinated Ti species were the dominant species in Cr-TiO2/40TUD-1 and Cr-TiO2/50TUD-1. It has been demonstrated that the amount of TUD-1 as photocatalyst support affected the wavelength response and the bandgap energy of the resulting materials. All the materials have bandgap energy of ~2.9 eV. The photocatalytic performance of the synthesized materials was tested out in dye photodegradation under visible light irradiation at 298 K for 5 hours. Results showed that all Cr-TiO2/TUD-1 materials had higher photocatalytic activity than that of Cr-TiO2. This could be explained by the high surface area and porosity provided by TUD-1 in enhancing the adsorption and diffusivities of the dye molecules, hence leading to the promising photocatalytic activity. Among the materials prepared, Cr-TiO2/30TUD-1 appeared as the most superior photocatalyst which gave the highest dye photodegradation.

2014 ◽  
Vol 38 (7) ◽  
pp. 3127-3136 ◽  
Author(s):  
Swati Sood ◽  
Surinder Kumar Mehta ◽  
Ahmad Umar ◽  
Sushil Kumar Kansal

Ultrasonic assisted sol–gel synthesized Bi-doped TiO2 mesoporous nanoparticles with a good crystallinity and high surface area were prepared. The 1% Bi-doped TiO2 catalyst showed the highest photocatalytic activity under visible light.


2015 ◽  
Vol 1109 ◽  
pp. 424-428 ◽  
Author(s):  
Yee Khai Ooi ◽  
Leny Yuliati ◽  
Siew Ling Lee

A series of visible light driven photocatalysts of Cr-doped TiO2 and Cr-doped TiO2 supported on TUD-1 have been successfully synthesized via surfactant-free sol-gel method followed by wet impregnation procedure. XRD analysis revealed that both anatase and rutile phases existed in Cr-doped TiO2 samples. After loading onto TUD-1, both Ti and Cr were incorporated in the highly porous siliceous matrix. As observed, more tetrahedrally coordinated Ti species was formed in Cr-doped TiO2 after supporting onto TUD-1. The photocatalytic performance of the synthesized materials was tested in the photodegradation of Methylene Blue under visible light irradiation. Results showed that 2.5 mol% Cr dopant gave the highest photocatytic activity to TiO2 in dye photodegradation. Besides, all the 2.5Cr-TiO2 supported on TUD-1 materials had higher photocatalytic activity than that of 2.5Cr-TiO2. Among the materials prepared, 2.5Cr-TiO2/30TUD-1 appeared as the most superior photocatalyst which gave the highest dye photodegradation of 75%.


2020 ◽  
Vol 12 (11) ◽  
pp. 1255-1264
Author(s):  
Nada D. Al-Khthami ◽  
Mohammed Alsawat ◽  
Reda M. Mohamed ◽  
Yousef G. Alghamdi ◽  
Zaki I. Zaki

In order to create a new design for an efficient photocatalyst, you need to decrease the obtained band gap and isolate the charge carriers photogenerated while setting up a new visible light methodology. The latter option could be accomplished via combination of catalyst in the metal oxide form over the surface of semiconductor. Hence, the current work aimed at synthesizing a new nanocomposite material from LaFeO3/g-C3N4 through the use of mesoporous silica as a template processing g-C3N4 higher surface area, which was subsequently decorated with LaFeO3. The LaFeO3 of variable content of 1∼4% was used to decorate our targeted basic material. The structure was confirmed by ordinary techniques, in addition to photocatalytic ability via splitting water reaction. g-C3N4 and LaFeO3 photocatalytic efficiencies were compared to the newly developed LaFeO3/g-C3N4 nanocomposites showing their outstanding activity. The optimum LaFeO3 content was confirmed as 3%, which gave higher photocatalytic efficiency against both g-C3N4 and LaFeO3 (34 and 21 times respectively). To enhance the catalytic system efficiency, a scavenger with a positive hole was added as glycerol. A maximum of five runs of higher efficient reuse was examined as required, as well as stable nanocomposite photocatalyst. The mesoporous structure, high surface area, and capacity of charge separation over the photocatalysis process were all investigated as main conditions which affect photocatalytic activity of LaFeO3/g-C3N4 nanocomposites.


CrystEngComm ◽  
2014 ◽  
Vol 16 (27) ◽  
pp. 6059-6065 ◽  
Author(s):  
Yang Lu ◽  
Yong-Song Luo ◽  
Hong-Mei Xiao ◽  
Shao-Yun Fu

Novel core–shell-structured BiVO4 hollow spheres synthesized via a simple hydrothermal route exhibit an excellent photocatalytic activity.


2012 ◽  
Vol 217-219 ◽  
pp. 857-861 ◽  
Author(s):  
Xiao Ling Guo ◽  
Xiang Dong Wang ◽  
Feng He

N-doped mesoporous TiO2 with high surface area and crystallinity were synthesized by sol-gel method using polyacrylamide (PAM) and polyethylene glycol (PEG) as the complex templates. The resulting materials were characterized by XRD, TEM, N2 adsorption-desorption, and UV-Vis spectroscopy. It is found that when the weight ratio of PAM and PEG is 1:4, the sample, prepared at 600 °C in nitrogen and at 500 °C in air, is anatase phase and has high surface area and crystallinity. The particle size and pore size of the sample are about 10 nm and 17 nm respectively. Compared with that of the undoped mesoporous TiO2, the absorption band edges of N-doped samples exhibit an evident red-shift. The results of the photocatalytic degradation of methyl orange (MO) show that N-doped sample appears to have higher photocatalytic activity under visible light than undoped sample.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 872
Author(s):  
Nezar H. Khdary ◽  
Waleed S. Alkhuraiji ◽  
Tamil S. Sakthivel ◽  
Duaa N. Khdary ◽  
Mohamed Abdel Salam ◽  
...  

This work provides an alternate unique simple methodology to design and synthesize chemically modified nanophotocatalyst based on high surface area TiO2 nanoparticles that can be used efficiently for the photodegradation of organic pollutants under normal visible light rather than complicated UV irradiation. In this study, dual visible light and UV-driven nanophotocatalysts were synthesized via wet chemistry procedures using high surface area TiO2 nanoparticles functionalized with (3-Aminopropyl) trimethoxysilane and attached chemically to the CuXO to improve the charge separation and maintain the non-charge recombination. The successful modification of the TiO2 nanoparticles and the formation of the TiO2-NH2-CuxO nanophotocatalyst were confirmed using different characterization techniques, and the results revealed the synthesis of high surface area TiO2 nanoparticles, and their chemical modification with an amino group and further decoration with copper to produce TiO2-NH2-CuxO nanophotocatalyst. The photocatalytic activity of TiO2 and TiO2-NH2-CuxO nanophotocatalyst were evaluated using methylene blue (MB) dye; as an example of organic pollutants. The resulting TiO2-NH2-CuxO nanophotocatalyst exhibited superior photocatalytic activity for the degradation of MB dye under visible light irradiation, due to the reduction in the energy bandgap. The degradation of the MB dye using the TiO2-NH2-CuxO nanophotocatalyst was investigated using LC-MS, and the results revealed that the hydroxyl free radical is mainly responsible for the cleavage and the degradation of the MB dye.


2021 ◽  
Author(s):  
Ranran Zhang ◽  
Jiaying Jin ◽  
Lumeng Jia ◽  
Bo Shi ◽  
Rufen Chen

Abstract The Ti3C2 and g-C3N4NS were obtained first, and the CdS/Ti3C2/g-C3N4NS Z-scheme composites were prepared via a facile hydrothermal synthesis and their photocatalytic properties were investigated. The g-C3N4NS with a high surface area displayed higher adsorption and degradation capacity. Compared with Ti3C2/g-C3N4NS and CdS, the optimal ternary composites exhibited significantly enhanced visible light (vis) photocatalytic activity. The Fabrication of CdS/Ti3C2/g-C3N4NS Z-scheme heterostructure not only enhanced vis absorption, but also improved the separation ability of the photoinduced e−-h+ pairs and the redox ability of the catalyst, thereby leading to the improvement of visible-light-driven photocatalytic activity. This finding provides new insights into the construction of high efficiency Z-scheme heterostructure photocatalyst.


Sign in / Sign up

Export Citation Format

Share Document