scholarly journals COMPARATIVE STUDIES OF CELL GROWTH OF FRESHWATER MICROALGA CHLORELLA SP. IN PHOTOAUTOTROPHIC, HETEROTROPHIC AND MIXOTROPHIC CULTURES

2016 ◽  
Vol 78 (7) ◽  
Author(s):  
Costantine Joannes ◽  
Rachel Fran Mansa ◽  
Suhaimi Md. Yasir ◽  
Jedol Dayou

Lately, research on biodiesel production as a renewable and sustainable energy has become increasingly apparent due to the fact that fossil fuel is decreasing and the concern of global warming issues. The third generation of biofuel, which is microalgae-based biodiesel had gained interest over the last decade. The ability of microalgae to grow in various conditions is one of its advantages as the potential and promising feedstock for biodiesel. Microalgae can be cultivated in three modes such as photoautotrophic, heterotrophic and mixotrophic culture mode. Unlike photoautotrophic mode where light is required, the heterotrophic mode mainly utilized carbon compounds to grow. On the other hand, the mixotrophic mode is the condition where light and carbon compounds are supplied for microalgae culturing. This paper investigates the cell growth of Chlorella sp. cultivated in photoautotrophic, heterotrophic and mixotrophic culture mode. It was found that Chlorella sp. was capable of producing the highest cell concentration of 6.67 ± 0.56 x 106 cell mL-1 in the photoautotrophic mode for 23 days of cultivation period. This was 1.3 times and 3.2 times greater than the cell concentration in mixotrophic (5.02 ± 0.49 x 106 cell mL-1) and heterotrophic (2.03 ± 0.29 x 106 cell mL-1) culture, respectively. On the contrary, the highest specific growth rate obtained in the study was from heterotrophic mode (0.32 ± 0.04 day-1) followed by photoautotrophic and mixotrophic mode with 0.26 ± 0.05 day-1 and 0.20 ± 0.04 day-1, respectively. Chlorella sp. cell grew well under the photoautotrophic and mixotrophic mode. However, the insufficient of glucose level had contributed to lower cells productivity in the heterotrophic culture. Therefore, the mixotrophic mode could also be an alternative pathway in microalgae cultivation for biodiesel production if the glucose supplied was adequate and at the suitable level.  

2020 ◽  
Vol 141 ◽  
pp. 03009
Author(s):  
Pichayatorn Bunkaew ◽  
Sasithorn Kongruang

The Plackett-Burman Design (PBD) was applied to study fresh water microalgae cultivation using Chlorella sp. TISTR 8411 to select the influential nutrient factors for biomass and lipid production. The PBD for 13 trials from 11 nutrient factors with 3 levels was studied in the mixotrophic cultivation at 28 0C under 16:8 light and dark photoperiods over 7 days of cultivation time. Two influential factors were chosen as glucose and cobalt chloride hexahydrate to further design via Box-Behnken Design (BBD) in order to optimize the cultivation of this microalgae for biodiesel production. The 17 trials of 3 factors and 3 levels of BBD experimental design technique were applied with varying factors of glucose (20-40 g/L), cobalt chloride hexahydrate (0.01-0.04 mg/L) and light intensity (4,500-7,500 Lux) under 16:8 light and dark photoperiods over 7 days of cultivation time at 28 0C. Result showed that Chlorella sp. TISTR 8411 cultivation yield 0.52 g/L biomass and 0.31 g/L lipid production resulting in approximately 60% of lipid production when cultivated in 20.05 g/L glucose, 0.04 mg/L CoCl26H2O under light intensity of 4,614 Lux with the supplementation of 4.38 g/L NaHCO3 coupled with 1 g/L of both NaNO3 and KH2PO4. Under statically mixotrophic cultivation, result indicated that Chlorella sp. TISTR 8411 had potential to produce high lipid content for biodiesel application and biomass production for nutraceutical application. Further experiment with the longer cultivation period up to 2 weeks would implement not only for monitoring the growth kinetics but also evaluating the suitable type of fatty acid production.


2020 ◽  
Vol 7 (2) ◽  
pp. 95
Author(s):  
Shinta Elystia ◽  
Indah Kartika Zulfa ◽  
Sri Rezeki Muria

Palm oil mill effluent contains pollutants and has high content of organic matter. The treatment process of palm oil mill effluent generally with open pond system that requires extensive land and a long contact time. To reduce the number of ponds needed in the process of palm oil mill effluent, microalgae Chlorella sp. by using palm mill effluent which contains organic material as a source of nutrition for microalgae cultivation media Chlorella sp. to improve the efficiency of COD removal in palm oil mill effluent. In this research, variations of the concentration of Fe and Co micronutrients were combined with variations concentrations of Fe (0.3; 0.5 and 0.7) mg/L and Co (1 and 2) mg/L in flat-photobioreactors were carried out for 7 days with lighting by using sunlight. The results showed that at a combination of 0.5 mg/L Fe + 0.2 mg/L Co, the highest microalgae cell growth was 6 x 106 cell/ml and the highest removal efficiency of COD was 83.3%.


2014 ◽  
Vol 8 (2) ◽  
pp. 13-17 ◽  
Author(s):  
Dakshayini Jayaramareddy ◽  
Ravikumar Krishnappa ◽  
Girisha Sirangala Thimmappa

Lipids produced by microalgal biomass can be grouped into nonpolar lipids and polar lipids, which can be easily converted into biofuels. Microalgal samples were collected from three different ponds of Bangalore and cultured in the laboratory to find the effect of different pH, temperature and media on the production of biomass and lipids. Among these, pH-9, temperature -25°C and Beneck’s media was most suitable for production of biomass (35.80 g/L) and lipids from the isolated microalgae Chlorella sp. compare to Chladospora sp. (13.33 g/L). Chlorella sp. Showed 0.32 (OD) at pH-9, 0.43 (OD) at temperature-25°C and 2.94 (OD) in Beneck’s media. Our result revealed that nutrient supply along with measured variables affects the production of biomass and lipids in different microalgae.DOI: http://dx.doi.org/10.3126/ijls.v8i2.10227 International Journal of Life Sciences Vol.8(2): 2014; 13-17


2018 ◽  
Vol 122 ◽  
pp. 80-88 ◽  
Author(s):  
Richa Katiyar ◽  
Randhir K. Bharti ◽  
B.R. Gurjar ◽  
Amit Kumar ◽  
Shalini Biswas ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Rasool Kamal ◽  
Yuxue Liu ◽  
Qiang Li ◽  
Qitian Huang ◽  
Qian Wang ◽  
...  

Abstract Background Crude glycerol as a promising feedstock for microbial lipid production contains several impurities that make it toxic stress inducer at high amount. Under stress conditions, microorganisms can accumulate l-proline as a safeguard. Herein, l-proline was assessed as an anti-stress agent in crude glycerol media. Results Crude glycerol was converted to microbial lipids by the oleaginous yeast Rhodosporidium toruloides CGMCC 2.1389 in a two-staged culture mode. The media was supplied with exogenous l-proline to improve lipid production efficiency in high crude glycerol stress. An optimal amount of 0.5 g/L l-proline increased lipid titer and lipid yield by 34% and 28%, respectively. The lipid titer of 12.2 g/L and lipid content of 64.5% with a highest lipid yield of 0.26 g/g were achieved with l-proline addition, which were far higher than those of the control, i.e., lipid titer of 9.1 g/L, lipid content of 58% and lipid yield of 0.21 g/g. Similarly, l-proline also improved cell growth and glycerol consumption. Moreover, fatty acid compositional profiles of the lipid products was found suitable as a potential feedstock for biodiesel production. Conclusion Our study suggested that exogenous l-proline improved cell growth and lipid production on crude glycerol by R. toruloides. The fact that higher lipid yield as well as glycerol consumption indicated that l-proline might act as a potential anti-stress agent for the oleaginous yeast strain.


Sign in / Sign up

Export Citation Format

Share Document