Effects of Environmental Factors on Chlorella sp. microalgae for Biodiesel Production Purpose: Enhanced Lipid and Biomass Productivity

Author(s):  
Saeed Dalirynezhad ◽  
Ahmad Hallajisani ◽  
Hamoon Nouri ◽  
Abooali Golzary
2020 ◽  
Vol 148 ◽  
pp. 02005
Author(s):  
Deby Hajjar Rakhmadumila ◽  
Barti Setiani Muntalif

Increased interest in renewable, carbon-neutral energy sources makes processing biodiesel from microalgae has become the objective for many researchers and companies. Some kind of wastewater including municipal, industrial and agricultural wastewaters have been identified as alternate growth mediums. Produced water is the largest byproduct of the oil and natural gas extraction process which constitutes of high concentration of pollutants, such as dissolved nitrogen, phosphorus, dissolved organic carbon, heavy metal and monocyclic aromatic compound like BTEX. The purpose of this study is to identify Chlorella sp. potential for producing lipid in artificial produced water. Variations made in this study consist of 0%, 25%, 50%, 75% and 100% volume of artificial produced water to the control Walne medium. The highest specific growth rate and biomass productivity of Chlorella sp. achieved by culture grown in 25% wastewater with a value of 0.225 day−1 and 0.175 g L−1day−1, respectively. The highest lipid yield and productivity in mixed culture of artificial produced water and Walne medium achieved by culture in 25% artificial produced water with value of 0.231 and 40.48 mg.L−1.day−1. C16 and C18 fatty acids which dominated the lipids of Chlorella sp. in all culture variations indicated that the lipid of Chlorella sp. were suitable for producing high quality biodiesel.


2018 ◽  
Vol 77 (6) ◽  
pp. 1660-1672 ◽  
Author(s):  
Rashi Vishwakarma ◽  
Dolly Wattal Dhar ◽  
Sunil Pabbi

Abstract Chlorella sp. MCC 7 and Botryococcus sp. MCC 31 were investigated to enable large-scale biodiesel production from minimal constituents in the growth medium. Response surface methodology (RSM) was used to maximise the biomass productivity and lipid yield using only nitrogen (N), phosphorus (P) and potassium (K) as urea, single super phosphate and muriate of potash. The optimum values were 0.42 g/L nitrogen; 0.14 g/L phosphorus and 0.22 g/L potassium for Chlorella sp.; and 0.46 g/L; 0.14 g/L and 0.25 g/L for Botryococcus sp. Lipid yield of 42% for Chlorella sp. and 52% in Botryococcus sp. was observed. An enhancement in lipid yield by approximately 55% for Chlorella sp. and 73% for Botryococcus sp. was registered as compared to original nutrient medium. Fourier transform infrared (FTIR) analysis of extracted lipids revealed characteristic bands for triglycerides. This study provided utilisation of a practicable nutrient recipe in the form of N, P, K input for enhanced lipid yield from the selected microalgal strains.


2016 ◽  
Vol 78 (7) ◽  
Author(s):  
Costantine Joannes ◽  
Rachel Fran Mansa ◽  
Suhaimi Md. Yasir ◽  
Jedol Dayou

Lately, research on biodiesel production as a renewable and sustainable energy has become increasingly apparent due to the fact that fossil fuel is decreasing and the concern of global warming issues. The third generation of biofuel, which is microalgae-based biodiesel had gained interest over the last decade. The ability of microalgae to grow in various conditions is one of its advantages as the potential and promising feedstock for biodiesel. Microalgae can be cultivated in three modes such as photoautotrophic, heterotrophic and mixotrophic culture mode. Unlike photoautotrophic mode where light is required, the heterotrophic mode mainly utilized carbon compounds to grow. On the other hand, the mixotrophic mode is the condition where light and carbon compounds are supplied for microalgae culturing. This paper investigates the cell growth of Chlorella sp. cultivated in photoautotrophic, heterotrophic and mixotrophic culture mode. It was found that Chlorella sp. was capable of producing the highest cell concentration of 6.67 ± 0.56 x 106 cell mL-1 in the photoautotrophic mode for 23 days of cultivation period. This was 1.3 times and 3.2 times greater than the cell concentration in mixotrophic (5.02 ± 0.49 x 106 cell mL-1) and heterotrophic (2.03 ± 0.29 x 106 cell mL-1) culture, respectively. On the contrary, the highest specific growth rate obtained in the study was from heterotrophic mode (0.32 ± 0.04 day-1) followed by photoautotrophic and mixotrophic mode with 0.26 ± 0.05 day-1 and 0.20 ± 0.04 day-1, respectively. Chlorella sp. cell grew well under the photoautotrophic and mixotrophic mode. However, the insufficient of glucose level had contributed to lower cells productivity in the heterotrophic culture. Therefore, the mixotrophic mode could also be an alternative pathway in microalgae cultivation for biodiesel production if the glucose supplied was adequate and at the suitable level.  


2018 ◽  
Vol 122 ◽  
pp. 80-88 ◽  
Author(s):  
Richa Katiyar ◽  
Randhir K. Bharti ◽  
B.R. Gurjar ◽  
Amit Kumar ◽  
Shalini Biswas ◽  
...  

2020 ◽  
Vol 141 ◽  
pp. 03009
Author(s):  
Pichayatorn Bunkaew ◽  
Sasithorn Kongruang

The Plackett-Burman Design (PBD) was applied to study fresh water microalgae cultivation using Chlorella sp. TISTR 8411 to select the influential nutrient factors for biomass and lipid production. The PBD for 13 trials from 11 nutrient factors with 3 levels was studied in the mixotrophic cultivation at 28 0C under 16:8 light and dark photoperiods over 7 days of cultivation time. Two influential factors were chosen as glucose and cobalt chloride hexahydrate to further design via Box-Behnken Design (BBD) in order to optimize the cultivation of this microalgae for biodiesel production. The 17 trials of 3 factors and 3 levels of BBD experimental design technique were applied with varying factors of glucose (20-40 g/L), cobalt chloride hexahydrate (0.01-0.04 mg/L) and light intensity (4,500-7,500 Lux) under 16:8 light and dark photoperiods over 7 days of cultivation time at 28 0C. Result showed that Chlorella sp. TISTR 8411 cultivation yield 0.52 g/L biomass and 0.31 g/L lipid production resulting in approximately 60% of lipid production when cultivated in 20.05 g/L glucose, 0.04 mg/L CoCl26H2O under light intensity of 4,614 Lux with the supplementation of 4.38 g/L NaHCO3 coupled with 1 g/L of both NaNO3 and KH2PO4. Under statically mixotrophic cultivation, result indicated that Chlorella sp. TISTR 8411 had potential to produce high lipid content for biodiesel application and biomass production for nutraceutical application. Further experiment with the longer cultivation period up to 2 weeks would implement not only for monitoring the growth kinetics but also evaluating the suitable type of fatty acid production.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hee Su Kim ◽  
Won-Kun Park ◽  
Bongsoo Lee ◽  
Gyeongho Seon ◽  
William I. Suh ◽  
...  

AbstractThe heterotrophic cultivation of microalgae has a number of notable advantages, which include allowing high culture density levels as well as enabling the production of biomass in consistent and predictable quantities. In this study, the full potential of Chlorella sp. HS2 is explored through optimization of the parameters for its heterotrophic cultivation. First, carbon and nitrogen sources were screened in PhotobioBox. Initial screening using the Plackett-Burman design (PBD) was then adopted and the concentrations of the major nutrients (glucose, sodium nitrate, and dipotassium phosphate) were optimized via response surface methodology (RSM) with a central composite design (CCD). Upon validation of the model via flask-scale cultivation, the optimized BG11 medium was found to result in a three-fold improvement in biomass amounts, from 5.85 to 18.13 g/L, in comparison to a non-optimized BG11 medium containing 72 g/L glucose. Scaling up the cultivation to a 5-L fermenter resulted in a greatly improved biomass concentration of 35.3 g/L owing to more efficient oxygenation of the culture. In addition, phosphorus feeding fermentation was employed in an effort to address early depletion of phosphate, and a maximum biomass concentration of 42.95 g/L was achieved, with biomass productivity of 5.37 g/L/D.


2017 ◽  
Vol 76 (3) ◽  
pp. 719-727 ◽  
Author(s):  
Samadhan Yuvraj Bagul ◽  
Randhir K. Bharti ◽  
Dolly Wattal Dhar

Microalgae are reported as the efficient source of renewable biodiesel which should be able to meet the global demand of transport fuels. Present study is focused on assessment of wastewater grown indigenous microalga Chlorella sp. for fuel quality parameters. This was successfully grown in secondary treated waste water diluted with tap water (25% dilution) in glass house. The microalga showed a dry weight of 0.849 g L−1 with lipid content of 27.1% on dry weight basis on 21st day of incubation. After transesterification, the yield of fatty acid methyl ester was 80.64% with major fatty acids as palmitic, linoleic, oleic and linolenic. The physical parameters predicted from empirical equations in the biodiesel showed cetane number as 56.5, iodine value of 75.5 g I2 100 g−1, high heating value 40.1 MJ kg−1, flash point 135 °C, kinematic viscosity 4.05 mm2 s−1 with density of 0.86 g cm3 and cold filter plugging point as 0.7 °C. Fourier transform infra-red (FTIR), 1H, 13C NMR spectrum confirmed the chemical nature of biodiesel. The results indicated that the quality of biodiesel was almost as per the criterion of ASTM standards; hence, wastewater grown Chlorella sp. can be used as a promising strain for biodiesel production.


2017 ◽  
Vol 244 ◽  
pp. 1337-1340 ◽  
Author(s):  
Shih-Hsin Ho ◽  
Sheng-Yi Chiu ◽  
Chien-Ya Kao ◽  
Tsai-Yu Chen ◽  
Yu-Bin Chang ◽  
...  

2013 ◽  
Vol 147 ◽  
pp. 471-476 ◽  
Author(s):  
Naruetsawan Sanyano ◽  
Pakamas Chetpattananondh ◽  
Sininart Chongkhong

Sign in / Sign up

Export Citation Format

Share Document