OPTICAL BIOSENSORS PROSPECTIVE BASED ON BRAGG GRATING POLYMER WAVEGUIDE

2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Mohd Hazimin Mohd Salleh ◽  
Mohd Haziq M.S ◽  
Muhammad Salihi Abd Hadi

In this work, we demonstrate the potential of Bragg grating polymer waveguide as an optical biosensor. Visible wavelength region at 650 nm is used as a centre wavelength because it is commonly used in biological and chemical sensing for both label and label-free sensing.  The Bragg polymer waveguide structure is simulated using RSoft optical design and analysis software. The results show that there is a transmission drop with a 3 dB bandwidth of 661.0 nm when the surrounding refractive index is 1.33. The specific wavelength (transmission drop) is shifted to 724.2 nm when we increased the surrounding medium into 1.43 to mimic the bioanalytes solution. Simulation result shows that the wavelength shift was approximately 63.2 nm for every 0.1 increasing of surrounding refractive index. The Bragg grating polymer waveguide was fabricated by using electron beam lithography. Then, the fabricated devices were easily integrated within microfluidic systems in order to validate the wavelength shift. From the experiments, the wavelength shift occurred approximately 20.3 nm over 0.1 increment of refractive index. The discrepancies were likely due to the accumulation of sucrose solution on top and sidewall of the sensing area, the insertion loss between input and output coupling of the waveguide interface that induced the noise to signal ratio. Where we know that, is impossible to happen in simulation. Thus both simulation and experimental results strongly indicate that Bragg grating polymer waveguide structure at visible wavelength region have a potential for label or label-free optical biosensing applications.

2011 ◽  
Vol 84-85 ◽  
pp. 582-585 ◽  
Author(s):  
Ming Fu Zhao ◽  
De Yi Huang ◽  
Bin Zhou ◽  
Lei Zi Jiao

In this paper, measurement method for the refractive index of chemical substances based on fiber Bragg grating (FBG) sensor was proposed. The relation between Bragg wavelength shift and surrounding refractive index (SRI) was analyzed theoretically and experimentally. The SRI sensitivity of the chemical sensor could be enhanced by reducing the cladding thickness of the FBG using hydrofluoric acid (HF) solution etching process. The experimental results indicated that the variation of Bragg wavelength increased as the SRI increased. In the low SRI region, the relationship between the Bragg wavelength shift and the change of the SRI was approximately linear.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5211 ◽  
Author(s):  
Binbin Yan ◽  
Lei Sun ◽  
Yanhua Luo ◽  
Liwei Yang ◽  
Haifeng Qi ◽  
...  

In this paper, a temperature self-compensated refractive index sensor based on fiber Bragg grating (FBG) and the ellipsoid structure is demonstrated. The ellipsoid can excite the cladding modes and recouple them into the fiber core. Two well-defined wavelength bands are observed in the reflection spectrum of the proposed sensor, i.e., the Bragg resonant peak and the cladding resonant peaks. By measuring the wavelength shift of the cladding resonant peak, the surrounding refractive index (SRI) can be determined, and the wavelength shift of the Bragg resonant peak can be used as a reliable reference to self-compensate the temperature variation (temperature sensitivity of 10.76 pm/°C). When the SRI changes from 1.3352 to 1.3722, the cladding resonant peak redshifts linearly with an average sensitivity of 352.6 pm/RIU (refractive index unit). When the SRI changes from 1.3722 to 1.4426, an exponential redshift is observed with a maximum sensitivity of 4182.2 pm/RIU. Especially, the sensing performance is not very reliant on the distance between the FBG and the ellipsoid, greatly improving the ease of the fabrication.


2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Mohd Hazimin Mohd Salleh ◽  
Mohd Haziq MS ◽  
Muhammad Salihi Abd Hadi

Introduction: Applications of rapid sensing and detection of biological analytes are growing due to the significant environmental monitoring, health screening, cell growth and bio/chemical sensors. These factors influence the research and development on simple, cheap and sensitive functional biomolecular device. The interest in the label-free optical detection has been increased as the optical waveguide has a direct light interaction with surrounding analytes, easy integration with microfluidic system and the capability to provide specific interaction. Methods: In this work, we demonstrate the potential of microstructure as an optical biosensor. Visible wavelength is utilized because it is commonly used in biological and chemical sensing for both label and label-free sensing. The SU8 polymer microstructures waveguides were fabricated on 3.5 µm oxide. The microstructures are simulated using COMSOL Multiphysics. Simulation was recorded based on refractive index that mimic the bioanalytes solution and biological binding. Then the experimental setup is developed to control the optical component and manipulate the liquid samples. The fabricated devices were characterized by using the end-facet technique. Meanwhile, microfluidic channel system was also constructed in order to inject the liquid sample into the sensor surface. Results: The wavelength shift for microresonator structure approximately 41.2 nm for 0.1 increments of surrounding refractive index. The experiments demonstrate that the shift occurred approximately 22.5 nm. In other hand, simulated Bragg grating structure gained the shift at 63.2 nm. Meanwhile, the experimental results achieve approximately 20.3 nm. Conclusions: Thus, both simulation and experimental results strongly indicate that patternable polymer microstructure has a huge potential for optical biosensing applications at visible region.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4478 ◽  
Author(s):  
Jiachen Yu ◽  
Zhenlin Wu ◽  
Xin Yang ◽  
Xiuyou Han ◽  
Mingshan Zhao

A tilted fiber Bragg grating (TFBG) hydrogen sensor coated with a palladium (Pd) membrane by the electroless plating method is proposed in this paper. A uniform layer of Pd metal is fabricated in aqueous solutions by the chemical coating method, which is used as the sensitive element to detect the change of the surrounding refractive index (SRI) caused by hydrogen absorption. The change in SRI causes an unsynchronized change of the cladding modes and the Bragg peak in the TFBG transmission spectrum, thereby eliminating the cross-sensitivity due to membrane expansion and is able to simultaneously monitor the presence of cracks in the pipe, as well as the hydrogen leakage. By subtracting the wavelength shift caused by fiber expansion, the change of SRI, i.e., the information from the H2 level, can be separately obtained. The drifted wavelength is measured for the H2 concentration below the hydrogen explosion limit between 1% and 4%. The chemical-based coating has the advantages of a low cost, a simple operation, and being suitable for coating on long fiber structures. The proposed sensor is able to detect the H2 signal in 5 min at a 1% H2 concentration. The proposed sensor is proved to be able to monitor the hydrogen level without the cross-sensitivity of temperature variation and expansion strains, so could be a good candidate for security applications in industry.


2011 ◽  
Author(s):  
Bin-bin Luo ◽  
Ming-fu Zhao ◽  
Xiao-jun Zhou ◽  
De-yi Huang ◽  
Shao-fei Wang ◽  
...  

2017 ◽  
Vol 10 (2) ◽  
pp. 260-263 ◽  
Author(s):  
Muhammad Bin Jalil

This study presents the modelling, simulation, and characterization of the Fiber Bragg grating (FBG) on maximum reflectivity, bandwidth, the effect of applied strain to the wavelength shift, ʎB and sensitivity of the wavelength shift with strain for optical sensing system. In this study, a commercial FBG with the center wavelength of 1550nm is used in order to measure the spectral response of FBG to strain. The parameters used in these simulations are the fiber grating length, L ranging from 1 to 10mm, the changes in refractive index, ∆n from 0.0002 to 0.0020, the effective refractive index, is 1.46 and the grating period of FBG,Λ for 530nm in the performance of FBG. The bandwidth and spectrum reflectivity are analyzed from the variation of refractive index and grating length. Simulations on the FBG are carried out using OriginPro 2016 and Microsoft Excel 2010 software. The Excel sheet is used to generate data and the OriginPro 2016 is used to generate the graphs. The results obtained indicates the variation in grating length and refractive index affect the spectral reflectivity and the bandwidth. In addition, results obtained show that the changes in the Bragg wavelength are due to an increase in length of the grating region which due to the applied strain.


2011 ◽  
Vol 84-85 ◽  
pp. 586-589
Author(s):  
Ming Fu Zhao ◽  
De Yi Huang ◽  
Lei Zi Jiao ◽  
Xue Mei Cao ◽  
Xi Han

The low refractive index sensing principle of the fiber Bragg grating (FBG) was analyzed theoretically, the temperature compensation scheme corresponding to the theoretical model was established. A single-end etched FBG was designed and fabricated for simultaneous measurement of temperature and refractive index. The experimental results demonstrated that the Bragg wavelength shift exhibits a nonlinear behavior with the temperature and yeast refractive index changes. The temperature change to the influence of the sensor was eliminated by numerical analysis, and then the relationship between the Bragg wavelength shift and the yeast refractive index is linear, the sensor yeast refractive index sensitivity of 5.42nm/riu was obtained.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Taishi Nishihara ◽  
Akira Takakura ◽  
Masafumi Shimasaki ◽  
Kazunari Matsuda ◽  
Takeshi Tanaka ◽  
...  

Abstract Assemblies of single-walled carbon nanotubes with a specific chiral structure are promising future optofunctional materials because of their strong light–matter coupling arising from sharp optical resonances of quasi-one-dimensional excitons. Their strong optical resonances, which lie in the infrared-to-visible wavelength region, can be selected by their chiralities, and this selectivity promises a wide range of applications including photonic and thermo-optic devices. However, the broadband complex optical spectra of single-chirality carbon nanotube assemblies are scarce in the literature, which has prevented researchers and engineers from designing devices using them. Here, we experimentally determine broadband complex refractive index spectra of single-chirality carbon nanotube assemblies. Free-standing carbon nanotube membranes and those placed on sapphire substrates were fabricated via filtration of the nanotube solution prepared by the separation method using gel chromatography. Transmission and reflection spectra were measured in the mid-infrared to visible wavelength region, and the complex refractive indices of nanotube assemblies were determined as a function of photon energy. The real and imaginary parts of the refractive indices of the nanotube membrane with a bulk density of 1 g cm−3 at the first subband exciton resonance were determined to be approximately 2.7–3.6 and 1.3i–2.4i, respectively. We propose an empirical formula that phenomenologically describes the complex refractive index spectra of various single-chirality nanotube membranes, which can facilitate the design of photonic devices using carbon nanotubes as the material.


Sign in / Sign up

Export Citation Format

Share Document