index unit
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 36)

H-INDEX

7
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Weijie Jiang ◽  
Tao Chen

Abstract We design and propose a five-band absorber based on graphene metamaterial for the terahertz (THz) sensing field. The localized surface plasmon resonances (LSPR) of patterned graphene are excited, contributing to five tunable ultra-narrow absorption peaks, which are specified by the electric field distributions. Moreover, the absorber is insensitive to different polarization modes and incident angles. When increasing the Fermi level of the patterned graphene, which is composed of a round ring and a square ring connected by four thin wires, the resonant frequencies exhibit distinct blue shifts. For refractive index sensing, due to the addition of a continuous dielectric groove, the theoretical results show that the maximum averaged normalized sensitivity, Q factor, and FOM can reach 0.647 RIU-1 (refractive index unit, RIU), 355.94, and 215.25 RIU-1, indicating that the sensing performances are further enhanced compared with previous works. As a result, the proposed structure may provide a new method to realize ultrasensing in the THz region.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8151
Author(s):  
Aruna Veeraselvam ◽  
Gulam Nabi Alsath Mohammed ◽  
Kirubaveni Savarimuthu ◽  
Jaume Anguera ◽  
Jessica Constance Paul ◽  
...  

In this paper, a graphene-based THz metamaterial has been designed and characterized for use in sensing various refractive index profiles. The proposed single-band THz sensor was constructed using a graphene-metal hybridized periodic metamaterial wherein the unit cell had a footprint of 1.395λeff × 1.395λeff and resonated at 4.4754 THz. The realized peak absorption was 98.88% at 4.4754 THz. The sensitivity of the proposed metamaterial sensor was estimated using the absorption characteristics of the unit cell. The performance of the sensor was analyzed under two different categories, viz. the random dielectric loading and chemical analytes, based on the refractive index. The proposed THz sensor offered a peak sensitivity of 22.75 GHz/Refractive Index Unit (RIU) for the various sample loadings. In addition, the effect of the sample thickness on the sensor performance was analyzed and the results were presented. From the results, it can be inferred that the proposed metamaterial THz sensor that was based on a refractive index is suitable for THz sensing applications.


2021 ◽  
Vol 11 (22) ◽  
pp. 10525
Author(s):  
Da Liu ◽  
Ran Gao ◽  
Zhipei Li ◽  
Anle Qi

This paper has proposed and experimentally demonstrated an integrated Co2+-doped microfiber Bragg grating sensor (Co-MFBGS) that can measure the surrounding liquid refractive index (LRI) and liquid flow rate (LFR) simultaneously. The Co-MFBGS provides well-defined resonant modes of core and cladding in the reflection spectrum. By monitoring the wavelength of the cladding mode, the LRI can be measured; meanwhile, by monitoring the wavelength of the core mode caused by the heat exchange, the LFR can be measured. The LRI and LFR can be distinguished by the wavelength separation between cladding mode and core mode. The experimental results show that in aqueous glycerin solution, the maximum measurement sensitivity for LRI detection is −7.85 nm/RIU (refractive index unit), and the LFR sensitivity is −1.93 nm/(μL/s) at a flow rate of 0.21 μL/s.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7410
Author(s):  
Ruey-Ching Twu ◽  
Kai-Hsuan Li ◽  
Bo-Lin Lin

A low-cost polyethylene terephthalate fluidic sensor (PET-FS) is demonstrated for the concentration variation measurement on fluidic solutions. The PET-FS consisted of a triangular fluidic container attached with a birefringent PET thin layer. The PET-FS was injected with the test liquid solution that was placed in a common path polarization interferometer by utilizing a heterodyne scheme. The measured phase variation of probe light was used to obtain the information regarding the concentration change in the fluidic liquids. The sensor was experimentally tested using different concentrations of sodium chloride solution showing a sensitivity of 3.52 ×104 deg./refractive index unit (RIU) and a detection resolution of 6.25 × 10−6 RIU. The estimated sensitivity and detection resolutions were 5.62 × 104 (deg./RIU) and 6.94 × 10−6 RIU, respectively, for the hydrochloric acid. The relationship between the measured phase and the concentration is linear with an R-squared value reaching above 0.995.


2021 ◽  
Vol 21 (11) ◽  
pp. 5535-5541
Author(s):  
Thu Trang Hoang ◽  
Van Dai Pham ◽  
Thanh Son Pham ◽  
Khai Q. Le ◽  
Quang Minh Ngo

We report a numerical study of D-shaped photonic crystal fiber based plasmonic refractive index sensor with high resolution and sensitivity in the near-infrared region. D-shaped photonic crystal fiber is formed by side polishing one part of photonic crystal fiber. It has a polishing surface where plasmonic gold layer is coated to modulate the resonant wavelength and enhance the refractive index sensitivity. Several D-shaped photonic crystal fiber plasmonic sensors with various distances from the photonic crystal fiber’s core to the polishing surface and gold thicknesses are designed and their characteristics are analyzed by the finite element method. The simulation results indicate that distance from the photonic crystal fiber’s core to the polishing surface causes modifications in the loss intensity, the resonant wavelength, and the refractive index sensitivity of D-shaped photonic crystal fiber plasmonic sensor. Mass production of refractive index sensors were achieved using a simple fabrication process, whereby the D-shaped photonic crystal fiber is grinded where distance from the photonic crystal fiber’s core to the polishing surface is less than one layer thickness and then coated with the gold layer. For the refractive index sensing applications, the maxima theoretical resolution and sensitivity of D-shaped photonic crystal fiber plasmonic sensor reach 2.98 × 10 6refractive index unit and 6,140 nm/refractive index unit in range of 1.30–1.37, respectively. We also report an initial fabrication of the D-shaped photonic crystal fiber following the standard stack-and- draw method to demonstrate the feasibility of the proposed device by using our in-house equipments. The proposed D-shaped photonic crystal fiber plasmonic sensor design in this work would be useful for the development of cheap refractive index sensors with high sensitivity and resolution.


2021 ◽  
Vol 9 ◽  
Author(s):  
Daijing Xu ◽  
Shubin Yan ◽  
Xiaoyu Yang ◽  
Jinxi Wang ◽  
Xiushan Wu ◽  
...  

Optical devices play an important role in different fields, such as refractive index detection in food processing and the biochemical industry. In our work, a novel nanoscale optical structure, composed of a metal-insulator-metal waveguide with a stub and a horizontal number eight-shape cavity (HNEC), is presented. The transmission properties of this structure are investigated in detail by using finite element method The effects of geometric parameters on sensing performance are studied in detail. Moreover, the influences of an asymmetric resonator caused by shifting central rectangular cavity of HNEC on transmission spectrum are discussed. The changing parameters of HNEC resonator have different effects on different resonance dips. Then, when the parameters of this presented structure are fixed as a of 540 nm, b of 340 nm, S of 0, l of 70 nm and g of 10 nm, this intriguing structure can serve as a refractive index sensor, whose maximum sensitivity can reach 1,500 nm/refractive index unit with a figure of merit of 75. Therefore, this structure will contribute to the development of miniaturization of optical devices.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3612
Author(s):  
Hai Liu ◽  
Xu Zhang ◽  
Benlei Zhao ◽  
Bo Wu ◽  
Hancheng Zhang ◽  
...  

Dual-parameter measurements of refractive index and methane concentration based on electromagnetic Fano resonance are proposed. Two independent Fano resonances can be produced through electric dipole and toroidal dipole resonance in an all-dielectric metasurface separately. The linear relationship between the spectral peak-shifts and the parameters to be measured will be obtained directly. The refractive index (RI) sensitivity and gas sensitivity are 1305.6 nm/refractive index unit (RIU), −0.295 nm/% for one resonance peak (dip1), and 456.6 nm/RIU, −0.61 nm/% for another resonance peak (dip2). Such a metasurface has simpler structure and higher sensitivity, which is beneficial for environmental gas monitoring or multi-parameter measurements.


Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 164
Author(s):  
Jing Yu ◽  
Tingting Lang ◽  
Huateng Chen

This paper presents a terahertz (THz) metamaterial absorber made of stainless steel. We found that the absorption rate of electromagnetic waves reached 99.95% at 1.563 THz. Later, we analyzed the effect of structural parameter changes on absorption. Finally, we explored the application of the absorber in refractive index sensing. We numerically demonstrated that when the refractive index (n) is changing from 1 to 1.05, our absorber can yield a sensitivity of 74.18 μm/refractive index unit (RIU), and the quality factor (Q-factor) of this sensor is 36.35. Compared with metal–dielectric–metal sandwiched structure, the absorber designed in this paper is made of stainless steel materials with no sandwiched structure, which greatly simplifies the manufacturing process and reduces costs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1163
Author(s):  
Petra Urbancova ◽  
Dusan Pudis ◽  
Matej Goraus ◽  
Jaroslav Kovac

In this paper, we present a two-dimensional surface plasmon resonance structure for refractive index sensing of liquid analytes. The polymer structure was designed with a period of 500 nm and prepared in a novel IP-Dip polymer by direct laser writing lithography based on a mechanism of two-photon absorption. The sample with a set of prepared IP-Dip structures was coated by 40 nm thin gold layer. The sample was encapsulated into a prototyped chip with inlet and outlet. The sensing properties were investigated by angular measurement using the prepared solutions of isopropyl alcohol in deionized water of different concentrations. Sensitivity of 478–617 nm per refractive index unit was achieved in angular arrangement at external angle of incidence of 20°.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 598 ◽  
Author(s):  
Yusheng Zhang ◽  
Peng Lin ◽  
Yu-Sheng Lin

We present four designs of tunable split-disk metamaterial (SDM) absorbers. They consist of a bottom gold (Au) mirror layer anchored on Si substrate and a suspended-top SDM nanostructure with one, two, three, and four splits named SDM-1, SDM-2, SDM-3, and SDM-4, respectively. By tailoring the geometrical configurations, the four SDMs exhibit different tunable absorption resonances spanning from 1.5 µm to 5.0 µm wavelength range. The resonances of absorption spectra can be tuned in the range of 320 nm, and the absorption intensities become lower by increasing the gaps of the air insulator layer. To increase the sensitivity of the proposed devices, SDMs exhibit high sensitivities of 3312 nm/RIU (refractive index unit, RIU), 3362 nm/RIU, 3342 nm/RIU, and 3567 nm/RIU for SDM-1, SDM-2, SDM-3, and SDM-4, respectively. The highest correlation coefficient is 0.99999. This study paves the way to the possibility of optical gas sensors and biosensors with high sensitivity.


Sign in / Sign up

Export Citation Format

Share Document