scholarly journals SIZING A PARABOLIC TROUGH COLLECTOR FOR A MICRO SOLAR ORGANIC RANKINE CYCLE

2019 ◽  
Vol 81 (2) ◽  
Author(s):  
Choi Yun Chai ◽  
Hyung-chul Jung

There are many remote villages in Malaysia that are not connected to an electric grid, and are dependent on expensive diesel generator sets (gensets) in   their daily activities. Malaysia, a tropical country, has the potential to promote solar power generation in these isolated areas. The organic Rankine cycle (ORC) using solar thermal energy as the heat source could be an attractive approach to off-grid power generation. In this study, a 1 kWe solar ORC with a parabolic trough collector (PTC) is proposed. The ORC utilizes R245fa as the working fluid and Therminol VP1 as the heat transfer medium between the PTC and ORC. Thermodynamic analysis of the ORC is performed, predicting the performance of the ORC and the operating conditions of the PTC. Based on the design requirements of the PTC from the power cycle analysis, process of sizing the PTC is conducted via a numerical model. Seven sets of heat collector elements (HCE) are examined. The effects of absorber tube material, selective coating on the outer surface of the absorber tube, and the absorber tube diameter on the PTC performance are presented. Simulation results show that HCE with 6 mm of SS316L absorber tube, enclosed with 11 mm of Pyrex borosilicate glass tube, has the highest collector efficiency of 62.25%. The receiver length required is 8.05 m and the aperture width of the collector is 3.54 m. Further study is recommended to select a thermal storage system for night-time operation of the ORC.

2021 ◽  
Vol 11 (5) ◽  
pp. 1984
Author(s):  
Ramin Moradi ◽  
Emanuele Habib ◽  
Enrico Bocci ◽  
Luca Cioccolanti

Organic Rankine cycle (ORC) systems are some of the most suitable technologies to produce electricity from low-temperature waste heat. In this study, a non-regenerative, micro-scale ORC system was tested in off-design conditions using R134a as the working fluid. The experimental data were then used to tune the semi-empirical models of the main components of the system. Eventually, the models were used in a component-oriented system solver to map the system electric performance at varying operating conditions. The analysis highlighted the non-negligible impact of the plunger pump on the system performance Indeed, the experimental results showed that the low pump efficiency in the investigated operating range can lead to negative net electric power in some working conditions. For most data points, the expander and the pump isentropic efficiencies are found in the approximate ranges of 35% to 55% and 17% to 34%, respectively. Furthermore, the maximum net electric power was about 200 W with a net electric efficiency of about 1.2%, thus also stressing the importance of a proper selection of the pump for waste heat recovery applications.


Author(s):  
Giovanni Manente ◽  
Randall Field ◽  
Ronald DiPippo ◽  
Jefferson W. Tester ◽  
Marco Paci ◽  
...  

This article examines how hybridization using solar thermal energy can increase the power output of a geothermal binary power plant that is operating on geothermal fluid conditions that fall short of design values in temperature and flow rate. The power cycle consists of a subcritical organic Rankine cycle using industrial grade isobutane as the working fluid. Each of the power plant units includes two expanders, a vaporizer, a preheater and air-cooled condensers. Aspen Plus was used to model the plant; the model was validated and adjusted by comparing its predictions to data collected during the first year of operation. The model was then run to determine the best strategy for distributing the available geothermal fluid between the two units to optimize the plant for the existing degraded geofluid conditions. Two solar-geothermal hybrid designs were evaluated to assess their ability to increase the power output and the annual energy production relative to the geothermal-only case.


Author(s):  
Fredrik Ahlgren ◽  
Maria E. Mondejar ◽  
Magnus Genrup ◽  
Marcus Thern

Maritime transportation is a significant contributor to SOx, NOx and particle matter emissions, even though it has a quite low CO2 impact. New regulations are being enforced in special areas that limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry towards the improvement of the energy efficiency of current ship engines and the reduction of their energy demand. Although more sophisticated and complex engine designs can improve significantly the efficiency of the energy systems in ships, waste heat recovery arises as the most influent technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected in fluid and exhaust gas streams. The primary heat sources for waste heat recovery are the engine exhaust and the engine coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines exhaust heat. Experimental data from the operating conditions of the engines on the M/S Birka Stockholm cruise ship were logged during a port-to-port cruise from Stockholm to Mariehamn over a period of time close to one month. The ship has four main engines Wärtsilä 5850 kW for propulsion, and four auxiliary engines 2760 kW used for electrical consumers. A number of six load conditions were identified depending on the vessel speed. The speed range from 12–14 knots was considered as the design condition, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.


Author(s):  
Concepción Paz ◽  
Eduardo Suarez ◽  
Miguel Concheiro ◽  
Antonio Diaz

Waste heat dissipated in the exhaust system in a combustion engine represents a major source of energy to be recovered and converted into useful work. A waste heat recovery system (WHRS) based on an Organic Rankine Cycle (ORC) is a promising approach, and has gained interest in the last few years in an automotive industry interested in reducing fuel consumption and exhaust emissions. Understanding the thermodynamic response of the boiler employed in an ORC plays an important role in steam cycle performance prediction and control system design. The aim of this study is therefore to present a methodology to study these devices by means of pattern recognition with infrared thermography. In addition, the experimental test bench and its operating conditions are described. The methodology proposed identifies the wall coordinates, traces paths, and tracks wall temperature along them in a way that can be exported for subsequent post-processing and analysis. As for the results, through the wall temperature paths on both sides (exhaust gas and working fluid) it was possible to quantitatively estimate the temperature evolution along the boiler and, in particular, the beginning and end of evaporation.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Pantelis N. Botsaris ◽  
Alexandros G. Pechtelidis ◽  
Konstantinos A. Lymperopoulos

The present work is focused on the development of a simulation model for an existing cogeneration power plant, which utilizes a solar thermal field with parabolic trough solar collectors coupled to an Organic Rankine Cycle engine. The power plant is modeled in the trnsys v.17 software package and its performance has been validated with real operating conditions. The simulated system (concentrated solar power (CSP) field and ORC engine) is the main part of a hybrid power plant located near “Ziloti” village of the Municipality of Xanthi, in northeastern Greece. The construction of the hybrid power plant was funded by the Strategic Co-Funded Project of the European Territorial Cooperation Program Greece–Bulgaria 2007–2013 with the acronym ENERGEIA. The power plant simulated in this paper includes a 234 kWth solar parabolic trough collector (PTC) field, a 5 m3 thermal energy storage tank, and a 5 kWe ORC engine for the production of thermal and electrical energies. The results of the simulations present small deviation in contrast to the real operating data of the CSP power plant coupled with the ORC engine, therefore the simulation model is considered as reliable.


Author(s):  
Quazi E. Hussain ◽  
David R. Brigham

The Rankine cycle is used commercially to generate power in stationary power plants using water as the working fluid. For waste heat recovery applications, where the temperature is lower, water is typically replaced by a carefully selected organic fluid. This work is based on using the waste heat in an automobile to generate electricity using the Organic Rankine cycle (ORC) with R245fa (1, 1, 1, 3, 3 penta-fluoropropane) as the working fluid. The electricity thus generated can be used to drive the accessory load or charge the battery which in any case helps improve the fuel economy. A simple transient numerical model has been developed that is capable of capturing the main effects of this cycle. Results show that exhaust heat alone can generate enough electricity that is capable of bringing about an improvement to the fuel economy under transient drive cycle conditions. Power output during EPA Highway drive cycle is much higher than EPA City due to higher exhaust mass flow rate and temperature. Time needed to reach operating conditions or in other words, the warm-up time plays an important role in the overall drive cycle output. Performance is found to improve significantly when coolant waste heat is used in conjunction with the residual exhaust heat to pre-heat the liquid. A sizing study is also performed to keep the cost, weight, and packaging requirement down without sacrificing too much power. With careful selection of heat exchanger design parameters, it has been demonstrated that the backpressure on the engine can be actually lowered by cooling off the exhaust gas. This lower backpressure will further boost the fuel economy gained by the electricity produced by the Rankine bottoming cycle.


Author(s):  
P. Kohlenbach ◽  
S. McEvoy ◽  
W. Stein ◽  
A. Burton ◽  
K. Wong ◽  
...  

This paper presents component performance results of a new parabolic trough collector array driving an organic Rankine cycle (ORC) power generation system. The system has been installed in the National Solar Energy Centre at CSIRO Energy Technology in Newcastle, NSW, Australia. It consists of four rows of 18 parabolic mirrors each in a 2×2 matrix with a total aperture area of approximately 132m2. The absorber tube is a laterally aligned, 40mm copper tube coated with a semi-selective paint and enclosed in a 50mm non-evacuated glass tube to reduce convection losses. The mirror modules, which are light-weight and robust, are made from thin low iron back silvered glass bonded to a sheet steel substrate. They are supported by a box truss on semi circular hoops running on rollers for single axis tracking. The mirror design has been chosen to allow low-cost manufacturing as well as simple commissioning and operation. The ORC unit is a FP6 unit sourced from Freepower Ltd. with a net power output of 6kWel at 180°C inlet temperature and a total heat input of 70 kWth. It uses a two-stage expansion process with hydrofluoroether as the working fluid. A wet cooling tower is used to dissipate the reject heat from the ORC. The two key components of the envisioned system are the trough reflector/receiver and the ORC unit. The optical performance of the mirror elements was investigated with regard to the flux mapping onto the receiver tube. The ORC unit has been tested separately using an electrical oil heater as the heat source. This paper presents results for irradiation capture and intensity over the receiver width of a single trough mirror module. The complete system including trough collectors and ORC has not been in transient operation yet, thus experimental steady-state results of the ORC unit are presented.


Sign in / Sign up

Export Citation Format

Share Document