scholarly journals Computer Based X-Ray Computed Tomography Training System for Engineering Education

2017 ◽  
Vol 9 (3-2) ◽  
Author(s):  
Muhammad Hanif Ramlee ◽  
Jasmy Yunus ◽  
Eko Supriyanto

X-ray computed tomography (called CT) scanner is a powerful and widely used medical imaging modality in the hospital. The CT machine is very expensive and it can produce dangerous radiation when a person operates the machine. This makes it difficult for biomedical engineers and radiographer students to learn its working principles. In order to overcome this problem, a computer based CT scanner trainer system has been developed. The system is implemented using National Instrument’s Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW). At the beginning, it was started with the studying of existing CT scan machine. After gathering information, development process continued to develop generator component, x-ray tube subsystem, detector subsystem, imaging subsystem, and finally is reconstruction subsystem. The trainer system that has been developed is able to be used to train students on how to use CT scanner especially to get high quality images with lowest possible radiation. This will help biomedical engineers and radiographer students to have a better understanding of CT scanner in term of its working principle and to prevent radiation hazard during the learning process.

2021 ◽  
Vol 7 (11) ◽  
pp. 230
Author(s):  
Shintaro Nohara ◽  
Toshifumi Mukunoki

The objective of this study is to quantitatively evaluate the soil structure behavior when under shear stress to understand the mechanism of shear zone formation using a micro-focus X-ray computed tomography (CT) scanner to visualize the internal samples without causing disturbance. A new image-analysis method was proposed to systematically evaluate the particle length and direction by fitting the particle as an ellipsoid. Subsequently, a direct shear experiment was conducted on soil materials, and shear band was scanned using a micro-focus X-ray CT scanner. After validating the proposed method, the soil structure was evaluated in the shear zone via image analysis on the CT images. Furthermore, the strain inside the specimen was evaluated using digital image correlation. The results showed that a partial change in the particle direction occurred when the volume expansion inside the shear zone exceeded the peak. In addition, the width of the shear zone was ~7.1 times the median grain size of the sand used; however, the region exhibiting a change in the direction of the particles was narrow and confined to the vicinity of the shear plane.


2017 ◽  
Vol 35 (2) ◽  
Author(s):  
Ricardo Leiderman ◽  
Andre M. B. Pereira ◽  
Francisco M. J. Benavides ◽  
Carla S. Silveira ◽  
Rodrigo M. R. Almeida ◽  
...  

ABSTRACT. In the present work, we describe our experience with digital petrophysics, enhancing our choices for performing the related tasks. The focus is on the use of ordinary personal computers. To our best knowledge, some of the information and hints we give cannot be found in the literature and we hope they may be useful to researchers that intend to work on the development of this new emerging technology. We have used micro-scale X-ray computed tomography to image the rock samples and, in that sense, we address here the issue of the corresponding image acquisition and reconstruction parameters adjustment. In addition, we discuss the imaging resolution selection and illustrate the issue of the representative volume choice with the aid of two examples. The examples corroborate the notion that it is much more challenging to define a representative volume for carbonate samples than for sandstone samples. We also discuss the image segmentation and describe in details the Finite Element computational implementation we developed to perform the numerical simulations for estimating the effective Young modulus from segmented microstructural images. We indicate the respective computational costs and show that our implementation is able to handle comfortably images of 300×300×300 voxels. We use a commercially available Finite Volume software to estimate the effective absolute directional permeability. Keywords: rock physics, micro-scale X-ray computed tomography, multi-scale homogenization, effective elastic moduli, representative volume. RESUMO. No presente trabalho descrevemos nossa experiência com Petrofísica Digital, dando ênfase às nossas escolhas para a realização das tarefas relacionadas. O foco é no uso de computadores pessoais e, salvo melhor juízo, algumas das informações e dados que apresentamos não podem ser achados na literatura. Nós adquirimos as imagens digitais de amostras de rochas com o auxílio de microtomografia computadorizada por raio-X e, nesse sentido, discutimos aqui o ajuste dos parâmetros de aquisição e reconstrução de imagens. Além disso, nós discutimos a questão da seleção do volume representativo e sua relação com o tamanho e resolução da imagem digital, mostrando dois exemplos ilustrativos. Os exemplos corroboram a noção de que é muito mais difícil definir um volume representativo tratável para carbonatos do que para arenitos. Nós também discutimos a segmentação de imagens no contexto da Petrofísica Digital e descrevemos em detalhes o código de Elementos Finitos por nós desenvolvido para estimar o módulo de Young efetivo de amostras de rochas a partir de suas imagens microtomográficas, indicando o respectivo custo computacional. Nós mostramos que nossas escolhas levaram a uma implementação computacional capaz de lidar confortavelmente com imagens de até 300×300×300 voxels. Por fim, descrevemos o uso do pacote comercial de Volumes Finitos para estimar a permeabilidade absoluta efetiva das amostras de rocha. Palavras-chave: física de rochas, microtomografia computadorizada por raio-X, homogeneização multiescala, módulo de Young efetivo, volume representativo.


2011 ◽  
Vol 41 (11) ◽  
pp. 2120-2140 ◽  
Author(s):  
Qiang Wei ◽  
Brigitte Leblon ◽  
Armand La Rocque

In several processes of the forest products industry, an in-depth knowledge of log and board internal features is required and their determination needs fast scanning systems. One of the possible technologies is X-ray computed tomography (CT) technology. Our paper reviews applications of this technology in wood density measurements, in wood moisture content monitoring, and in locating internal log features that include pith, sapwood, heartwood, knots, and other defects. Annual growth ring measurements are more problematic to be detected on CT images because of the low spatial resolution of the images used. For log feature identification, our review shows that the feed-forward back-propagation artificial neural network is the most efficient CT image processing method. There are also some studies attempting to reconstruct three-dimensional log or board images from two-dimensional CT images. Several industrial prototypes have been developed because medical CT scanners were shown to be inappropriate for the wood industry. Because of the high cost of X-ray CT scanner equipment, other types of inexpensive sensors should also be investigated, such as electric resistivity tomography and microwaves. It also appears that the best approach uses various different sensors, each of them having its own strengths and weaknesses.


2020 ◽  
pp. 45-50
Author(s):  
Brunela Ronchi ◽  
Gustavo Peña ◽  
Muriel Henriquez

Sarcoidosis-lymphoma syndrome is a clinical entity that can be diagnosed in different ways. Some of them are atypical. For these complex cases, positron emission tomography (PET) combined with an X-ray computed tomography (CT) scanner (PET-CT) is definitive for subsequent biopsy. A clinical case of our group is presented, which leads to the corresponding revision / update.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Nikolaos Mellios ◽  
Tyler Oesch ◽  
Panagiotis Spyridis

AbstractThe benefits of including fibers in ultra-high performance concrete (UHPC) are attributed to their good bond with the matrix and, hence, an optimal utilization of their properties. At the same time, though, fiber reinforcement may contribute to anisotropy in the composite material and induce weak areas. The influence of the fibers’ orientation on the material properties is a matter of current scientific discourse and it is known to play a vital role in structural design. In the case studies presented herein, mechanical laboratory tests using pulsating load regimes on UHPC with a strength of more than 200 MPa were simulated by use of finite element models. The orientations of the fibers were measured for each test sample prior to failure using an X-ray computed tomography (CT) scanner, and these orientations are explicitly implemented into the model. The paper discusses the methodology of merging data retrieved by CT image processing and state-of-the-art FE simulation techniques Moreover, the CT scanning was carried out throughout the testing procedure, which further enables the comparison of the mechanical tests and the FE models in terms of damage propagation and failure patterns. The results indicate that the overall fiber configuration and behavior of the samples can be realistically modelled and validated by the proposed CT-FE coupling, which can enhance the structural analysis and design process of elements produced with steel fiber reinforced and UHPC materials.


1999 ◽  
Vol 11 (1) ◽  
pp. 199-211
Author(s):  
J. M. Winter ◽  
R. E. Green ◽  
A. M. Waters ◽  
W. H. Green

Sign in / Sign up

Export Citation Format

Share Document