scholarly journals Use of the method of measurement of chlorophyll fluorescence to determine the phytotoxicity of mesotrione in poppy (Papaver somniferum) in relation to application factors

Author(s):  
Jana Filová ◽  
Vojtěch Kocurek ◽  
Vladimír Smutný

The aim of the research work was to evaluate phytotoxicity of mesotrione in poppy (Papaver somniferum). The amount of spraying water (150, 300 and 450 l per hectare) was compared as well. In the end, the different growth stimulators (Atonik – 0.6 l . ha−1, Route – 0.8 l . ha−1) and the adjuvants (Atplus 463 – 0.5% solution, Silwet 77 – 0.1 l . ha−1) wre tested. Degree of phytotoxicity of individual va­riants was assessed by measuring chlorophyll fluorescence (parameter: maximum quantum yield of electron transport in photosystem II - QY) in 1st to 21st day after treatment. The results showed that the application of mesotrione caused phytotoxicity on poppy plants. The most significant phy­to­to­xi­ci­ty is evident at doses of 450 l spraying water per hectare. Addition of growth stimulators and adjuvants increases the phytotoxicity (decreases the value of QY) compared to the herbicide application itself. The mesotrione reduced the weight of dry plants by 15 % (150 l of spraying water), 1 % (300 l of spraying water) and 64 % (450 l of spraying water) compared to control variant.

2016 ◽  
Vol 61 (2) ◽  
pp. 331-335 ◽  
Author(s):  
Xuchun Qiu ◽  
Kouki Mukai ◽  
Yohei Shimasaki ◽  
Michito Tsuyama ◽  
Tadashi Matsubara ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 272 ◽  
Author(s):  
Chiu-Yueh Lan ◽  
Kuan-Hung Lin ◽  
Wen-Dar Huang ◽  
Chang-Chang Chen

Wheat is a staple food worldwide, but its productivity is reduced by salt stress. In this study, the mitigative effects of 22 μM selenium (Se) on seedlings of the wheat (Triticum aestivum L.) cultivar Taichung SEL. 2 were investigated under different salt stress levels (0, 100, 200, 300, and 400 mM NaCl). Results of the antioxidative capacity showed that catalase (CAT) activity, non-enzymatic antioxidants (total phenols, total flavonoids, and anthocyanins), 1,1-Diphenyl-2-Picryl-Hydrazyl (DPPH) radical-scavenging activity, and the reducing power of Se-treated seedlings were enhanced under saline conditions. The more-stabilized chlorophyll fluorescence parameters (maximal quantum yield of photosystem II (Fv/Fm), minimal chlorophyll fluorescence (F0), effective quantum yield of photosystem II (ΦPSII), quantum yield of regulated energy dissipation of photosystem II (Y(NPQ)), and quantum yield of non-regulated energy dissipation of photosystem II (Y(NO)) and the less-extensive degradation of photosynthetic pigments (total chlorophyll and carotenoids) in Se-treated seedlings were also observed under salt stress. The elongation of shoots and roots of Se-treated seedling was also preserved under salt stress. Protection of these physiological traits in Se-treated seedlings might have contributed to stable growth observed under salt stress. The present study showed the protective effect of Se on the growth and physiological traits of wheat seedlings under salt stress.


2020 ◽  
Vol 10 (15) ◽  
pp. 5031 ◽  
Author(s):  
Mohammad Yaghoubi Khanghahi ◽  
Sabrina Strafella ◽  
Carmine Crecchio

The present research aimed at evaluating the harmless dissipation of excess excitation energy by durum wheat (Triticum durum Desf.) leaves in response to the application of a bacterial consortium consisting of four plant growth-promoting bacteria (PGPB). Three pot experiments were carried out under non-stress, drought (at 40% field capacity), and salinity (150 mM NaCl) conditions. The results showed that drought and salinity affected photo-protective energy dissipation of photosystem II (PSII) increasing the rate of non-photochemical chlorophyll fluorescence quenching (NPQ (non-photochemical quenching) and qCN (complete non-photochemical quenching)), as well as decreasing the total quenching of chlorophyll fluorescence (qTQ), total quenching of variable chlorophyll fluorescence (qTV) and the ratio of the quantum yield of actual PSII photochemistry, in light-adapted state to the quantum yield of the constitutive non-regulatory NPQ (PQ rate). Our results also indicated that the PGPB inoculants can mitigate the adverse impacts of stresses on leaves, especially the saline one, in comparison with the non-fertilized (control) treatment, by increasing the fraction of light absorbed by the PSII antenna, PQ ratio, qTQ, and qTV. In the light of findings, our beneficial bacterial strains showed the potential in reducing reliance on traditional chemical fertilizers, in particular in saline soil, by improving the grain yield and regulating the amount of excitation energy.


Sign in / Sign up

Export Citation Format

Share Document