scholarly journals Evolution of insurance company service quality survey, using self-learning neural network

Author(s):  
Vladimír Konečný ◽  
Oldřich Trenz ◽  
Dana Dvořáková

The objective of the paper is to demonstrate the abilities and possible approaches to classification of set of objects using self-organizing maps. As the objects, clients of an insurance company that made an agreement regarding mandatory insurance of motor vehicles were selected. The opinions of the clients and their overall satisfaction reflected in responses to presented answers. The clients were classified into three groups. The first two contained satisfied clients (i.e. good clients for the company), the last group contained clients that could potentially switch to the competitors. Subsequent analysis enabled discovering the reasons of low customer satisfaction and critical factors of losing the least satisfied clients. For the analysis of the responses (one hundred fifty-one) and the insurance company, experimental model of self-organizing map realized at the Department of informatics was used. Used experimental model has proved very effective software tool.

Separations ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 52 ◽  
Author(s):  
Nicholas Thurn ◽  
Mary Williams ◽  
Michael Sigman

Classification of un-weathered ignitable liquids is a problem that is currently addressed by visual pattern recognition under the guidelines of Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry, ASTM E1618-14. This standard method does not separately address the identification of substrate pyrolysis patterns. This report details the use of a Kohonen self-organizing map coupled with extracted ion spectra to organize ignitable liquids and substrate pyrolysis samples on a two-dimensional map with groupings that correspond to the ASTM-classifications and separate the substrate pyrolysis samples from the ignitable liquids. The component planes give important information regarding the ions from the extracted ion spectra that contribute to the different classes. Some additional insight is gained into grouping of substrate pyrolysis samples based on the nature of the unburned material as a wood or non-wood material. Further subclassification was not apparent from the self-organizing maps (SOM) results.


2018 ◽  
Vol 9 (3) ◽  
pp. 209-221 ◽  
Author(s):  
Seung-Yoon Back ◽  
Sang-Wook Kim ◽  
Myung-Il Jung ◽  
Joon-Woo Roh ◽  
Seok-Woo Son

Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 235
Author(s):  
Diego Galvan ◽  
Luciane Effting ◽  
Hágata Cremasco ◽  
Carlos Adam Conte-Junior

Background and objective: In the current pandemic scenario, data mining tools are fundamental to evaluate the measures adopted to contain the spread of COVID-19. In this study, unsupervised neural networks of the Self-Organizing Maps (SOM) type were used to assess the spatial and temporal spread of COVID-19 in Brazil, according to the number of cases and deaths in regions, states, and cities. Materials and methods: The SOM applied in this context does not evaluate which measures applied have helped contain the spread of the disease, but these datasets represent the repercussions of the country’s measures, which were implemented to contain the virus’ spread. Results: This approach demonstrated that the spread of the disease in Brazil does not have a standard behavior, changing according to the region, state, or city. The analyses showed that cities and states in the north and northeast regions of the country were the most affected by the disease, with the highest number of cases and deaths registered per 100,000 inhabitants. Conclusions: The SOM clustering was able to spatially group cities, states, and regions according to their coronavirus cases, with similar behavior. Thus, it is possible to benefit from the use of similar strategies to deal with the virus’ spread in these cities, states, and regions.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Adeoluwa Akande ◽  
Ana Cristina Costa ◽  
Jorge Mateu ◽  
Roberto Henriques

The explosion of data in the information age has provided an opportunity to explore the possibility of characterizing the climate patterns using data mining techniques. Nigeria has a unique tropical climate with two precipitation regimes: low precipitation in the north leading to aridity and desertification and high precipitation in parts of the southwest and southeast leading to large scale flooding. In this research, four indices have been used to characterize the intensity, frequency, and amount of rainfall over Nigeria. A type of Artificial Neural Network called the self-organizing map has been used to reduce the multiplicity of dimensions and produce four unique zones characterizing extreme precipitation conditions in Nigeria. This approach allowed for the assessment of spatial and temporal patterns in extreme precipitation in the last three decades. Precipitation properties in each cluster are discussed. The cluster closest to the Atlantic has high values of precipitation intensity, frequency, and duration, whereas the cluster closest to the Sahara Desert has low values. A significant increasing trend has been observed in the frequency of rainy days at the center of the northern region of Nigeria.


2021 ◽  
Vol 11 (4) ◽  
pp. 1933
Author(s):  
Hiroomi Hikawa ◽  
Yuta Ichikawa ◽  
Hidetaka Ito ◽  
Yutaka Maeda

In this paper, a real-time dynamic hand gesture recognition system with gesture spotting function is proposed. In the proposed system, input video frames are converted to feature vectors, and they are used to form a posture sequence vector that represents the input gesture. Then, gesture identification and gesture spotting are carried out in the self-organizing map (SOM)-Hebb classifier. The gesture spotting function detects the end of the gesture by using the vector distance between the posture sequence vector and the winner neuron’s weight vector. The proposed gesture recognition method was tested by simulation and real-time gesture recognition experiment. Results revealed that the system could recognize nine types of gesture with an accuracy of 96.6%, and it successfully outputted the recognition result at the end of gesture using the spotting result.


2012 ◽  
Vol 117 (D4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Anders A. Jensen ◽  
Anne M. Thompson ◽  
F. J. Schmidlin

2002 ◽  
Vol 21 (12) ◽  
pp. 1193-1196 ◽  
Author(s):  
Lin Zhang ◽  
Al Fortier ◽  
David C. Bartel

Author(s):  
Macario O. Cordel ◽  
Arnulfo P. Azcarraga

Several time-critical problems relying on large amount of data, e.g., business trends, disaster response and disease outbreak, require cost-effective, timely and accurate data summary and visualization, in order to come up with an efficient and effective decision. Self-organizing map (SOM) is a very effective data clustering and visualization tool as it provides intuitive display of data in lower-dimensional space. However, with [Formula: see text] complexity, SOM becomes inappropriate for large datasets. In this paper, we propose a force-directed visualization method that emulates SOMs capability to display the data clusters with [Formula: see text] complexity. The main idea is to perform a force-directed fine-tuning of the 2D representation of data. To demonstrate the efficiency and the vast potential of the proposed method as a fast visualization tool, the methodology is used to do a 2D-projection of the MNIST handwritten digits dataset.


2017 ◽  
Vol 20 (K4) ◽  
pp. 30-38
Author(s):  
Tung Son Pham ◽  
Huy Minh Truong ◽  
Tuan Ba Pham

In recent years, Artificial Intelligence (AI) has become an emerging subject and been recognized as the flagship of the Fourth Industrial Revolution. AI is subtly growing and becoming vital in our daily life. Particularly, Self-Organizing Map (SOM), one of the major branches of AI, is a useful tool for clustering data and has been applied successfully and widespread in various aspects of human life such as psychology, economic, medical and technical fields like mechanical, construction and geology. In this paper, the primary purpose of the authors is to introduce SOM algorithm and its practical applications in geology and construction. The results are classification of rock facies versus depth in geology and clustering two sets of construction prices indices and building material costs indice.


Sign in / Sign up

Export Citation Format

Share Document