Steenrod operators, the Coulomb branch and the Frobenius twist

2021 ◽  
Vol 157 (11) ◽  
pp. 2494-2552
Author(s):  
Gus Lonergan

Abstract We observe a fundamental relationship between Steenrod operations and the Artin–Schreier morphism. We use Steenrod's construction, together with some new geometry related to the affine Grassmannian, to prove that the quantum Coulomb branch is a Frobenius-constant quantization. We also demonstrate the corresponding result for the $K$ -theoretic version of the quantum Coulomb branch. At the end of the paper, we investigate what our ideas produce on the categorical level. We find that they yield, after a little fiddling, a construction which corresponds, under the geometric Satake equivalence, to the Frobenius twist functor for representations of the Langlands dual group. We also describe the unfiddled answer, conditional on a conjectural ‘modular derived Satake’, and, though it is more complicated to state, it is in our opinion just as neat and even more compelling.

2017 ◽  
Vol 154 (2) ◽  
pp. 275-327
Author(s):  
Sabin Cautis ◽  
Joel Kamnitzer

The geometric Satake correspondence gives an equivalence of categories between the representations of a semisimple group $G$ and the spherical perverse sheaves on the affine Grassmannian $Gr$ of its Langlands dual group. Bezrukavnikov and Finkelberg developed a derived version of this equivalence which relates the derived category of $G^{\vee }$-equivariant constructible sheaves on $Gr$ with the category of $G$-equivariant ${\mathcal{O}}(\mathfrak{g})$-modules. In this paper, we develop a K-theoretic version of the derived geometric Satake which involves the quantum group $U_{q}\mathfrak{g}$. We define a convolution category $K\operatorname{Conv}(Gr)$ whose morphism spaces are given by the $G^{\vee }\times \mathbb{C}^{\times }$-equivariant algebraic K-theory of certain fibre products. We conjecture that $K\operatorname{Conv}(Gr)$ is equivalent to a full subcategory of the category of $U_{q}\mathfrak{g}$-equivariant ${\mathcal{O}}_{q}(G)$-modules. We prove this conjecture when $G=\operatorname{SL}_{n}$. A key tool in our proof is the $\operatorname{SL}_{n}$ spider, which is a combinatorial description of the category of $U_{q}\mathfrak{sl}_{n}$ representations. By applying horizontal trace, we show that the annular $\operatorname{SL}_{n}$ spider describes the category of $U_{q}\mathfrak{sl}_{n}$-equivariant ${\mathcal{O}}_{q}(\operatorname{SL}_{n})$-modules. Then we use quantum loop algebras to relate the annular $\operatorname{SL}_{n}$ spider to $K\operatorname{Conv}(Gr)$. This gives a combinatorial/diagrammatic description of both categories and proves our conjecture.


2014 ◽  
Vol 14 (3) ◽  
pp. 493-575 ◽  
Author(s):  
Victor Ginzburg ◽  
Simon Riche

We describe the equivariant cohomology of cofibers of spherical perverse sheaves on the affine Grassmannian of a reductive algebraic group in terms of the geometry of the Langlands dual group. In fact we give two equivalent descriptions: one in terms of $\mathscr{D}$-modules of the basic affine space, and one in terms of intertwining operators for universal Verma modules. We also construct natural collections of isomorphisms parameterized by the Weyl group in these three contexts, and prove that they are compatible with our isomorphisms. As applications we reprove some results of the first author and of Braverman and Finkelberg.


Author(s):  
Timo Richarz ◽  
Jakob Scholbach
Keyword(s):  

AbstractWe refine the geometric Satake equivalence due to Ginzburg, Beilinson–Drinfeld, and Mirković–Vilonen to an equivalence between mixed Tate motives on the double quotient $$L^+ G {\backslash }LG / L^+ G$$ L + G \ L G / L + G and representations of Deligne’s modification of the Langlands dual group $${\widehat{G}}$$ G ^ .


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Gabi Zafrir

Abstract We propose that a certain 4d$$ \mathcal{N} $$ N = 1 SU(2) × SU(2) gauge theory flows in the IR to an $$ \mathcal{N} $$ N = 3 SCFT plus a single free chiral field. The specific $$ \mathcal{N} $$ N = 3 SCFT has rank 1 and a dimension three Coulomb branch operator. The flow is generically expected to land at the $$ \mathcal{N} $$ N = 3 SCFT deformed by the marginal deformation associated with said Coulomb branch operator. We also present a discussion about the properties expected of various RG invariant quantities from $$ \mathcal{N} $$ N = 3 superconformal symmetry, and use these to test our proposal. Finally, we discuss a generalization to another $$ \mathcal{N} $$ N = 1 model that we propose is related to a certain rank 3 $$ \mathcal{N} $$ N = 3 SCFT through the turning of certain marginal deformations.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Mario Martone

Abstract We derive explicit formulae to compute the a and c central charges of four dimensional $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) directly from Coulomb branch related quantities. The formulae apply at arbitrary rank. We also discover general properties of the low-energy limit behavior of the flavor symmetry of $$ \mathcal{N} $$ N = 2 SCFTs which culminate with our $$ \mathcal{N} $$ N = 2 UV-IR simple flavor condition. This is done by determining precisely the relation between the integrand of the partition function of the topologically twisted version of the 4d $$ \mathcal{N} $$ N = 2 SCFTs and the singular locus of their Coulomb branches. The techniques developed here are extensively applied to many rank-2 SCFTs, including new ones, in a companion paper.This manuscript is dedicated to the memory of Rayshard Brooks, George Floyd, Breonna Taylor and the countless black lives taken by US police forces and still awaiting justice. Our hearts are with our colleagues of color who suffer daily the consequences of this racist world.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Nathan Haouzi ◽  
Can Kozçaz

Abstract Starting from type IIB string theory on an ADE singularity, the (2, 0) little string arises when one takes the string coupling gs to 0. In this setup, we give a unified description of the codimension-two defects of the little string, labeled by a simple Lie algebra $$ \mathfrak{g} $$ g . Geometrically, these are D5 branes wrapping 2-cycles of the singularity, subject to a certain folding operation when the algebra is non simply-laced. Equivalently, the defects are specified by a certain set of weights of $$ {}^L\mathfrak{g} $$ L g , the Langlands dual of $$ \mathfrak{g} $$ g . As a first application, we show that the instanton partition function of the $$ \mathfrak{g} $$ g -type quiver gauge theory on the defect is equal to a 3-point conformal block of the $$ \mathfrak{g} $$ g -type deformed Toda theory in the Coulomb gas formalism. As a second application, we argue that in the (2, 0) CFT limit, the Coulomb branch of the defects flows to a nilpotent orbit of $$ \mathfrak{g} $$ g .


Author(s):  
Federico Scavia

Abstract Building upon work of Epstein, May and Drury, we define and investigate the mod p Steenrod operations on the de Rham cohomology of smooth algebraic stacks over a field of characteristic $p>0$ . We then compute the action of the operations on the de Rham cohomology of classifying stacks for finite groups, connected reductive groups for which p is not a torsion prime and (special) orthogonal groups when $p=2$ .


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Adam Chalabi ◽  
S. Prem Kumar ◽  
Andy O’Bannon ◽  
Anton Pribytok ◽  
Ronnie Rodgers ◽  
...  

Abstract We compute entanglement entropy (EE) of a spherical region in (3 + 1)-dimensional $$ \mathcal{N} $$ N = 4 supersymmetric SU(N) Yang-Mills theory in states described holographically by probe D3-branes in AdS5 × S5. We do so by generalising methods for computing EE from a probe brane action without having to determine the probe’s backreaction. On the Coulomb branch with SU(N) broken to SU(N − 1) × U(1), we find the EE monotonically decreases as the sphere’s radius increases, consistent with the a-theorem. The EE of a symmetric-representation Wilson line screened in SU(N − 1) also monotonically decreases, although no known physical principle requires this. A spherical soliton separating SU(N) inside from SU(N − 1) × U(1) outside had been proposed to model an extremal black hole. However, we find the EE of a sphere at the soliton’s radius does not scale with the surface area. For both the screened Wilson line and soliton, the EE at large radius is described by a position-dependent W-boson mass as a short-distance cutoff. Our holographic results for EE and one-point functions of the Lagrangian and stress-energy tensor show that at large distance the soliton looks like a Wilson line in a direct product of fundamental representations.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Daniel Elander ◽  
Maurizio Piai ◽  
John Roughley
Keyword(s):  

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Georgios Korpas ◽  
Jan Manschot ◽  
Gregory W. Moore ◽  
Iurii Nidaiev

AbstractThe u-plane integral is the contribution of the Coulomb branch to correlation functions of $${\mathcal {N}}=2$$ N = 2 gauge theory on a compact four-manifold. We consider the u-plane integral for correlators of point and surface observables of topologically twisted theories with gauge group $$\mathrm{SU}(2)$$ SU ( 2 ) , for an arbitrary four-manifold with $$(b_1,b_2^+)=(0,1)$$ ( b 1 , b 2 + ) = ( 0 , 1 ) . The u-plane contribution equals the full correlator in the absence of Seiberg–Witten contributions at strong coupling, and coincides with the mathematically defined Donaldson invariants in such cases. We demonstrate that the u-plane correlators are efficiently determined using mock modular forms for point observables, and Appell–Lerch sums for surface observables. We use these results to discuss the asymptotic behavior of correlators as function of the number of observables. Our findings suggest that the vev of exponentiated point and surface observables is an entire function of the fugacities.


Sign in / Sign up

Export Citation Format

Share Document