scholarly journals A Reduction Algorithm for Large-Base Primitive Permutation Groups

2006 ◽  
Vol 9 ◽  
pp. 159-173 ◽  
Author(s):  
Maska Law ◽  
Alice C. Niemeyer ◽  
Cheryl E. Praeger ◽  
Ákos Seress

AbstractThe authors present a nearly linear-time Las Vegas algorithm that, given a large-base primitive permutation group, constructs its natural imprimitive representation. A large-base primitive permutation group is a subgroup of a wreath product of symmetric groups Sn and Sr in product action on r-tuples of k-element subsets of {1, …, n}, containing Anr. The algorithm is a randomised speed-up of a deterministic algorithm of Babai, Luks, and Seress.

Author(s):  
Cheryl E. Praeger

AbstractLet Gbe a primitive permutation group on a finite set Ω. We investigate the subconstitutents of G, that is the permutation groups induced by a point stabilizer on its orbits in Ω, in the cases where Ghas a diagonal action or a product action on Ω. In particular we show in these cases that no subconstituent is doubly transitive. Thus if G has a doubly transitive subconstituent we show that G has a unique minimal normal subgroup N and either N is a nonabelian simple group or N acts regularly on Ω: we investigate further the case where N is regular on Ω.


Author(s):  
Andrea Belleri ◽  
Simone Labò

AbstractThe seismic performance of precast portal frames typical of the industrial and commercial sector could be generally improved by providing additional mechanical devices at the beam-to-column joint. Such devices could provide an additional degree of fixity and energy dissipation in a joint generally characterized by a dry hinged connection, adopted to speed-up the construction phase. Another advantage of placing additional devices at the beam-to-column joint is the possibility to act as a fuse, concentrating the seismic damage on few sacrificial and replaceable elements. A procedure to design precast portal frames adopting additional devices is provided herein. The procedure moves from the Displacement-Based Design methodology proposed by M.J.N. Priestley, and it is applicable for both the design of new structures and the retrofit of existing ones. After the derivation of the required analytical formulations, the procedure is applied to select the additional devices for a new and an existing structural system. The validation through non-linear time history analyses allows to highlight the advantages and drawbacks of the considered devices and to prove the effectiveness of the proposed design procedure.


2012 ◽  
Vol 92 (1) ◽  
pp. 127-136 ◽  
Author(s):  
CHERYL E. PRAEGER ◽  
CSABA SCHNEIDER

AbstractWe consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.


2001 ◽  
Vol 71 (2) ◽  
pp. 243-258 ◽  
Author(s):  
Cheryl E. Praeger ◽  
Aner Shalev

AbstractA permutation group is said to be quasiprimitive if every nontrivial normal subgroup is transitive. Every primitive permutation group is quasiprimitive, but the converse is not true. In this paper we start a project whose goal is to check which of the classical results on finite primitive permutation groups also holds for quasiprimitive ones (possibly with some modifications). The main topics addressed here are bounds on order, minimum degree and base size, as well as groups containing special p-elements. We also pose some problems for further research.


1966 ◽  
Vol 27 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Tosiro Tsuzuku

1. Let Ω be a finite set of arbitrary elements and let (G, Ω) be a permutation group on Ω. (This is also simply denoted by G). Two permutation groups (G, Ω) and (G, Γ) are called isomorphic if there exist an isomorphism σ of G onto H and a one to one mapping τ of Ω onto Γ such that (g(i))τ=gσ(iτ) for g ∊ G and i∊Ω. For a subset Δ of Ω, those elements of G which leave each point of Δ individually fixed form a subgroup GΔ of G which is called a stabilizer of Δ. A subset Γ of Ω is called an orbit of GΔ if Γ is a minimal set on which each element of G induces a permutation. A permutation group (G, Ω) is called a group of rank n if G is transitive on Ω and the number of orbits of a stabilizer Ga of a ∊ Ω, is n. A group of rank 2 is nothing but a doubly transitive group and there exist a few results on structure of groups of rank 3 (cf. H. Wielandt [6], D. G. Higman M).


2016 ◽  
Vol 19 (A) ◽  
pp. 163-177
Author(s):  
Hugo Labrande ◽  
Emmanuel Thomé

We outline an algorithm to compute $\unicode[STIX]{x1D703}(z,\unicode[STIX]{x1D70F})$ in genus two in quasi-linear time, borrowing ideas from the algorithm for theta constants and the one for $\unicode[STIX]{x1D703}(z,\unicode[STIX]{x1D70F})$ in genus one. Our implementation shows a large speed-up for precisions as low as a few thousand decimal digits. We also lay out a strategy to generalize this algorithm to genus $g$.


1989 ◽  
Vol 40 (2) ◽  
pp. 255-279 ◽  
Author(s):  
L. G. Kovács

There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding ‘imprimitive wreath decomposition’ concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The result may be heuristically expressed as follows, exploiting the associative nature of the construction. Each finite transitive permutation group may be written, essentially uniquely, as the wreath product of a sequence of wreath-indecomposable groups, amid the two-factor wreath decompositions of the group are precisely those which one obtains by bracketing this many-factor decomposition.If both input groups are nontrivial, the output above is always imprimitive. A similar construction gives a primitive output, called the wreath product in product action, provided the first input group is primitive and not regular. The second subject of the paper is the ‘product action wreath decomposition’ concept dual to this. An analogue of the result stated above is established for primitive groups with nonabelian socle.Given a primitive subgroup G with non-regular socle in some symmetric group S, how many subgroups W of S which contain G and have the same socle, are wreath products in product action? The third part of the paper outlines an algorithm which reduces this count to questions about permutation groups whose degrees are very much smaller than that of G.


Sign in / Sign up

Export Citation Format

Share Document