scholarly journals Gain scheduling LQI controller design for LPV descriptor systems and motion control of two-link flexible joint robot manipulator

Author(s):  
Yusuf Altun

This paper proposes a gain scheduling linear quadratic integral (LQI) servo controller design, which is derived from linear quadratic regulator (LQR) optimal control, for non-singular linear parameter varying (LPV) descriptor systems. It is assumed that state space matrices are non-singular since many mechanical systems do not have any non-singular matrices such as the natural state space forms of robotic manipulator, pendulum and suspension systems. A controller design is difficult for the systems due to rational LPV case. Therefore, the proposed gain scheduling controller is designed without the difficulty. Accordingly, the motion control design is implemented for two-link flexible joint robotic manipulator. Finally, the control system simulation is performed to prove the applicability and performance.

Author(s):  
Shusheng Zang ◽  
Jaqiang Pan

The design of a modern Linear Quadratic Regulator (LQR) is described for a test steam injected gas turbine (STIG) unit. The LQR controller is obtained by using the fuel flow rate and the injected steam flow rate as the output parameters. To meet the goal of the shaft speed control, a classical Proportional Differential (PD) controller is compared to the LQR controller design. The control performance of the dynamic response of the STIG plant in the case of rejection of load is evaluated. The results of the computer simulation show a remarkable improvement on the dynamic performance of the STIG unit.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 477 ◽  
Author(s):  
S. Augusti Lindiya ◽  
N. Subashini ◽  
K. Vijayarekha

Single Inductor (SI) converters with the advantage of using one inductor for any number of inputs/outputs find wide applications in portable electronic gadgets and electrical vehicles. SI converters can be used in Single Input Multiple Output (SIMO) and Multiple Input Multiple Output (MIMO) configurations but they need controllers to achieve good transient and steady state responses, to improve the stability against load and line disturbances and to reduce cross regulation. Cross regulation is the change in an output voltage due to change in the load current at another output and it is an added constraint in SI converters. In this paper, Single Input Dual Output (SIDO) and Dual Input Dual Output (DIDO) converters with applications capable of handling high load current working in Continuous Conduction Mode (CCM) of operation are taken under study. Conventional multivariable PID and optimal Linear Quadratic Regulator (LQR) controllers are developed and their performances are compared for the above configurations to meet the desired objectives. Generalized mathematical models for SIMO and MIMO are developed and a Genetic Algorithm (GA) is used to find the parameters of a multivariable PID controller and the weighting matrices of optimal LQR where the objective function includes cross regulation as a constraint. The simulated responses reveal that LQR controller performs well for both the systems over multivariable PID controller and they are validated by hardware prototype model with the help of DT9834® Data Acquisition Module (DAQ). The methodologies used here generate a fresh dimension for the case of such converters in practical applications.


Author(s):  
J. W. Watts ◽  
T. E. Dwan ◽  
R. W. Garman

A two-and-one-half spool gas turbine engine was modeled using the Advanced Computer Simulation Language (ACSL), a high level simulation environment based on FORTRAN. A possible future high efficiency engine for powering naval ships is an intercooled, regenerated (ICR) gas turbine engine and these features were incorporated into the model. Utilizing sophisticated instructions available in ACSL linear state-space models for this engine were obtained. A high level engineering computational language, MATLAB, was employed to exercise these models to obtain optimal feedback controllers characterized by the following methods: (1) state feedback; (2) linear quadratic regulator (LQR) theory; and (3) polygonal search. The methods were compared by examining the transient curves for a fixed off-load, and on-load profile.


2015 ◽  
Vol 76 (12) ◽  
Author(s):  
Fadzilah Hashim ◽  
Mohd Yusoff Mashor ◽  
Siti Maryam Sharun

This paper presents a study on the estimator based on Linear Quadratic Regulator (LQR) control scheme for Innovative Satellite (InnoSAT). By using LQR control scheme, the controller and the estimator has been derived for state space form in all three axes to stabilize the system’s performance. This study starts by converting the transfer functions of attitude control into state space form.  Then, the step continues by finding the best value of weighting matrices of LQR in order to obtain the best value of controller gain, K. After that, the best value of L is obtained for the estimator gain. The value of K and L is combined in forming full order compensator and in the same time the reduced order compensator is also formed. Lastly, the performance of full order compensator is compared to reduced order compensator. From the simulation, results indicate that both types of estimators have presented good stability and tracking performance. However, reduced order estimator has simpler equation and faster convergence to zero than the full order estimator. This property is very important in developing a satellite attitude control for real-time implementation.


Author(s):  
Soukaina Krafes ◽  
Zakaria Chalh ◽  
Abdelmjid Saka

This paper presents a Backstepping controller for five degrees of freedom Spherical Inverted Pendulum. Since the system is nonlinear, unstable, underactuated and MIMO and has a nonsquare form, the classic control design cannot be applied to control it. In order to remedy this problem, we propose in this paper a new method based on hierarchical steps of the Backstepping controller taking into a count the nonlinearities that cannot be neglected. Furthermore, a Linear Quadratic Regulator controller and LQR + PID based on the linearized system model are also designed for performance comparison. Finally, a simulation study is carried out to prove the effectiveness of proposed control scheme and is validated using the virtual reality environment that proves the performance of the Backstepping controller over the linear ones where it brings the pendulum from any initial condition in the upper hemisphere while the base is brought to the origin of the coordinates.


2011 ◽  
Vol 63-64 ◽  
pp. 533-536
Author(s):  
Xiao Jun Xing ◽  
Jian Guo Yan

With the purpose of overcoming the defect that unmanned air vehicles (UAVs) are easily disturbed by air current and tend to be unstable, an augmented-stability controller was developed for a certain UAV’s longitudinal motion. According to requirements of short-period damping ratio and control anticipation parameter (CAP) in flight quality specifications of GJB185-86 and C*, linear quadratic regulator (LQR) theory was used in the augmented-stability controller’s design. The simulation results show that the augmented-stability controller not only improves the UAV’s stability and dynamic characteristics but also enhances the UAV’s robustness.


2011 ◽  
Vol 110-116 ◽  
pp. 4977-4984 ◽  
Author(s):  
R.A. Khoshrooz ◽  
M.A.D. Vahid ◽  
M. Mirshams ◽  
M.R. Homaeinezhad ◽  
A.H. Ahadi

This paper presents a method to solve the Evolutionary Algorithm (EA) problems for optimal tuning of the Proportional-Deferential (PD) controller parameters. The major efficiency of the proposed method is the Genetic Algorithm (GA) stuck avoidance as well an appropriate estimation for GA lower and upper bounds. Also by this method for the Particle Swarm Optimization (PSO) methodology the initial choice of the controller parameters can be fulfilled to achieve the acceptable performance accuracies. For both GA and PSO methods, the Linear Quadratic Regulator (LQR) obtained trend is used as the reference for the determination of the aforementioned bounds and initial guess. The presented algorithm was applied to regulate a PD controller for the attitude control of a virtual satellite and also with Hardware-in-the-loop (HIL) reaction wheels. Heavy burden trying and error was eliminated from the PD controller design which can be mentioned as the important merit of the presented study.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Mapopa Chipofya ◽  
Deok Jin Lee ◽  
Kil To Chong

This paper presents a solution to stability and trajectory tracking of a quadrotor system using a model predictive controller designed using a type of orthonormal functions called Laguerre functions. A linear model of the quadrotor is derived and used. To check the performance of the controller we compare it with a linear quadratic regulator and a more traditional linear state space MPC. Simulations for trajectory tracking and stability are performed in MATLAB and results provided in this paper.


Sign in / Sign up

Export Citation Format

Share Document