scholarly journals The Effect of Copper and Aluminium Foil on Mechanical Properties of Natural Fiber Reinforced Plastics

Author(s):  
M Indra Reddy
2013 ◽  
Vol 24 ◽  
pp. 34-45 ◽  
Author(s):  
P.N.E. Naveen ◽  
T. Dharma Raju

Fiber-reinforced polymer composites have played a dominant role for a longtime in a variety of applications for their high specific strength and modulus. The fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only synthetic fibers such as glass, carbon etc., have been used in fiber-reinforced plastics. Although glass and other synthetic fiber-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. An attempt has been made to utilize the coir, as natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. The present work describes the development and characterization of a new set of natural fiber based polyester composites consisting of coir as reinforcement and epoxy resin. Coir composites are developed and their mechanical properties are evaluated, at five different volume fractions and tests were carried out and the results were presented. Experimental results showed tensile, static and Dynamic properties of the composites are greatly influenced by increasing the percentage of reinforcement, and indicate coir can be used as potential reinforcing material for many structural and non-structural applications.


1977 ◽  
Vol 99 (4) ◽  
pp. 401-407 ◽  
Author(s):  
T. Tsukizoe ◽  
N. Ohmae

Wear between unidirectionally oriented fiber-reinforced-plastics and mild steel has been investigated. The wear behavior was found to be greatly influenced by the sliding direction, the mechanical properties of fiber-reinforced-plastics and by the tribological properties of fiber-reinforcements or matrices. A summarization of wear-resistance of seven different kinds of fiber-reinforced-plastics signified that the epoxy resin reinforced with high-modulus carbon fibers was the best wear-resistant fiber-reinforced-plastics.


1970 ◽  
Vol 1 (2) ◽  
Author(s):  
H. Abdullah ◽  
S. Al Araimi and R. A. Siddiqui

Glass fiber reinforced plastics composite is extensively used as a structural material for pools, oil pipes and tanks because it has good corrosion resistance properties.  The effects of weathering on the mechanical properties of glass fiber reinforced plastics (GRP) in the Sultanate of Oman have been studied.  The tensile and three point bend specimens were exposed to outdoor conditions (open atmosphere) in sunlight and tested for various intervals of time.  It was observed that as the exposure time to sunlight, ultraviolet radiation and dust increases the mechanical properties of GRP materials decrease.  The effects of relative humidity (%RH) on the mechanical properties were also studied. It was found that as the relative humidity increased in the atmosphere during the exposure time, the tensile strength, flexural strength and modulus of elasticity are lowered. This work has revealed that the decrease in the mechanical properties of GRP under weathering conditions is subjected to atmospheric conditions such as humidity, temperature, ultraviolet radiation and pollutant.Key Words: Weathering, Glass-Fiber Reinforced Plastics, Degradation


2017 ◽  
Vol 744 ◽  
pp. 277-281 ◽  
Author(s):  
Alexander Hackert ◽  
Claudia Drebenstedt ◽  
Tristan Timmel ◽  
Tomasz Osiecki ◽  
Lothar Kroll

The combination of metals and fiber reinforced plastics is also known as hybrid metal composites. They offer the fusion of the good static mechanical properties of the fiber reinforced plastics and the good dynamic mechanical properties of the metal. For that reason, parts made of hybrid metal composites are predestined for the use as load relevant parts. The purpose of this study was to develop new technologies for semi finished hybrid metal composite materials. Thermoplastic Fiber-Reinforced Composites (TP-FRC) were arranged with new, isotropic, closed pore Aluminum Foam (AF) structures to an Extrinsically Combined Composite Sandwich (ECCS) by adhesive bonding. They form the basis for novel weight-optimized as well as cost-effective applications. The entire manufacturing process for the continuous semi-finished product was examined and verified according DIN EN 2563. This was done with regard to subsequent characterization by the specific bending modulus and specific bending stiffness. The examinations show a high bending stiffness and high strength structures combined with excellent damping properties at high damage tolerances. These are the most requested in automotive applications.


Sign in / Sign up

Export Citation Format

Share Document