scholarly journals Further evidence for a potassium-like action of lithium ions on sodium efflux in frog skeletal muscle

1972 ◽  
Vol 226 (3) ◽  
pp. 675-697 ◽  
Author(s):  
L. A. Beaugé ◽  
Olga Ortiz
1968 ◽  
Vol 52 (3) ◽  
pp. 408-423 ◽  
Author(s):  
L. A. Beaugé ◽  
R. A. Sjodin

Sartorius muscle cells from the frog were stored in a K-free Ringer solution at 3°C until their average sodium contents rose to around 23 mM/kg fiber (about 40 mM/liter fiber water). Such muscles, when placed in Ringer's solution containing 60 mM LiCl and 50 mM NaCl at 20°C, extruded 9.8 mM/kg of sodium and gained an equivalent quantity of lithium in a 2 hr period. The presence of 10-5 M strophanthidin in the 60 mM LiCl/50 mM NaCl Ringer solution prevented the net extrusion of sodium from the muscles. Lithium ions were found to enter muscles with a lowered internal sodium concentration at a rate about half that for entry into sodium-enriched muscles. When sodium-enriched muscles labeled with radioactive sodium ions were transferred from Ringer's solution to a sodium-free lithium-substituted Ringer solution, an increase in the rate of tracer sodium output was observed. When the lithium-substituted Ringer solution contained 10-5 M strophanthidin, a large decrease in the rate of tracer sodium output was observed upon transferring labeled sodium-enriched muscles from Ringer's solution to the sodium-free medium. It is concluded that lithium ions have a direct stimulating action on the sodium pump in skeletal muscle cells and that a significantly large external sodium-dependent component of sodium efflux is present in muscles with an elevated sodium content. In the sodium-rich muscles, about 23% of the total sodium efflux was due to strophanthidin-insensitive Na-for-Na interchange, about 67% being due to strophanthidin-sensitive sodium pumping.


1978 ◽  
Vol 235 (1) ◽  
pp. C25-C34 ◽  
Author(s):  
R. J. Connett ◽  
E. T. Hays

In addition to a strophanthidin-sensitive (SS) sodium efflux, a large component of the sodium efflux in freshly isolated frog skeletal muscle is sodium-activated and strophanthidin-insensitive (SASI). The amount of metabolic energy associated with sodium movement by each of these components was measured and the coupling between sodium movement and adenosine 5'-triphosphate (ATP) hydrolysis in muscle was calculated. Energy production was blocked by iodoacetate and cyanide. Energy turnover was estimated from the change in creatine phosphate (CrP) and ATP contents and expressed as potential energy (PE = CrP + 2ATP). After metabolic poisoning a linear fall of PE occurred (6.3 mumol/g.h). Metabolic poisoning had no effect on the magnitude of the SS or SASI components of sodium efflux. In 2 h the sodium moved, and PE change due to the SS component was 4.35 and 1.66 mumol/g.h, respectively, which gave a coupling factor of 2.6. The amount of sodium moved by the SASI component was similar to that moved by the SS component in 2 h whereas no energy change was observed. It was, therefore, concluded that sodium movement by the SASI component requires no energy input.


Author(s):  
Joachim R. Sommer ◽  
Nancy R. Wallace

After Howell (1) had shown that ruthenium red treatment of fixed frog skeletal muscle caused collapse of the intermediate cisternae of the sarcoplasmic reticulum (SR), forming a pentalaminate structure by obi iterating the SR lumen, we demonstrated that the phenomenon involves the entire SR including the nuclear envelope and that it also occurs after treatment with other cations, including calcium (2,3,4).From these observations we have formulated a hypothesis which states that intracellular calcium taken up by the SR at the end of contraction causes the M rete to collapse at a certain threshold concentration as the first step in a subsequent centrifugal zippering of the free SR toward the junctional SR (JSR). This would cause a) bulk transport of SR contents, such as calcium and granular material (4) into the JSR and, b) electrical isolation of the free SR from the JSR.


Author(s):  
A. V. Somlyo ◽  
H. Shuman ◽  
A. P. Somlyo

Electron probe analysis of frozen dried cryosections of frog skeletal muscle, rabbit vascular smooth muscle and of isolated, hyperpermeab1 e rabbit cardiac myocytes has been used to determine the composition of the cytoplasm and organelles in the resting state as well as during contraction. The concentration of elements within the organelles reflects the permeabilities of the organelle membranes to the cytoplasmic ions as well as binding sites. The measurements of [Ca] in the sarcoplasmic reticulum (SR) and mitochondria at rest and during contraction, have direct bearing on their role as release and/or storage sites for Ca in situ.


1990 ◽  
Vol 21 (6) ◽  
pp. 863-868 ◽  
Author(s):  
Péter P. Nánási ◽  
Tamás Kiss ◽  
Miklós Dankó ◽  
David A. Lathrop

Sign in / Sign up

Export Citation Format

Share Document