scholarly journals Membrane currents of the tunicate egg under the voltage-clamp condition.

1976 ◽  
Vol 254 (3) ◽  
pp. 607-638 ◽  
Author(s):  
H Okamoto ◽  
K Takahashi ◽  
M Yoshii
1994 ◽  
Vol 104 (5) ◽  
pp. 885-907 ◽  
Author(s):  
Q Ye ◽  
G L Heck ◽  
J A DeSimone

Taste sensory responses from the chorda tympani nerve of the rat were recorded with the lingual receptive field under current or voltage clamp. Consistent with previous results (Ye, Q., G. L. Heck, and J. A. DeSimone. 1993. Journal of Neurophysiology. 70:167-178), responses to NaCl were highly sensitive to lingual voltage clamp condition. This can be attributed to changes in the electrochemical driving force for Na+ ions through apical membrane transducer channels in taste cells. In contrast, responses to KCl over the concentration range 50-500 mM were insensitive to the voltage clamp condition of the receptive field. These results indicate the absence of K+ conductances comparable to those for Na+ in the apical membranes of taste cells. This was supported by the strong anion dependence of K salt responses. At zero current clamp, the potassium gluconate (KGlu) threshold was > 250 mM, and onset kinetics were slow (12 s to reach half-maximal response). Faster onset kinetics and larger responses to KGlu occurred at negative voltage clamp (-50 mV). This indicates that when K+ ion is transported as a current, and thereby uncoupled from gluconate mobility, its rate of delivery to the K+ taste transducer increases. Analysis of conductances shows that the paracellular pathway in the lingual epithelium is 28 times more permeable to KCl than to KGlu. Responses to KGlu under negative voltage clamp were not affected by agents that are K+ channel blockers in other systems. The results indicate that K salt taste transduction is under paracellular diffusion control, which limits chemoreception efficiency. We conclude that rat K salt taste occurs by means of a subtight junctional transducer for K+ ions with access limited by anion mobility. The data suggest that this transducer is not cation selective which also accounts for the voltage and amiloride insensitive part of the response to NaCl.


1997 ◽  
Vol 77 (3) ◽  
pp. 1418-1424 ◽  
Author(s):  
Chang-Ju Kim ◽  
Jeong-Seop Rhee ◽  
Norio Akaike

Kim, Chang-Ju, Jeong-Seop Rhee, and Norio Akaike. Modulation of high-voltage activated Ca2+ channels in the rat periaqueductal gray neurons by μ-type opioid agonist. J. Neurophysiol. 77: 1418–1424, 1997. The effect of μ-type opioid receptor agonist, D-Ala2,N-MePhe4,Gly5-ol-enkephalin (DAMGO), on high-voltage-activated (HVA) Ca2+ channels in the dissociated rat periaqueductal gray (PAG) neurons was investigated by the use of nystatin-perforated patch recording mode under voltage-clamp condition. Among 118 PAG neurons tested, the HVA Ca2+ channels of 38 neurons (32%) were inhibited by DAMGO (DAMGO-sensitive cells), and the other 80 neurons (68%) were not affected by DAMGO (DAMGO-insensitive cells). The N-, P-, L-, Q-, and R-type Ca2+ channel components in DAMGO-insensitive cells shared 26.9, 37.1, 22.3, 7.9, and 5.8%, respectively, of the total Ca2+ channel current. The channel components of DAMGO-sensitive cells were 45.6, 25.7, 21.7, 4.6, and 2.4%, respectively. The HVA Ca2+ current of DAMGO-sensitive neurons was inhibited by DAMGO in a concentration-, time-, and voltage-dependent manner. Application of ω-conotoxin-GVIA occluded the inhibitory effect of DAMGO ∼70%. So, HVA Ca2+ channels inhibited by DAMGO were mainly the N-type Ca2+ channels. The inhibitory effect of DAMGO on HVA Ca2+ channels was prevented almost completely by the pretreatment of pertussis toxin (PTX) for 8–10 h, suggesting that DAMGO modulation on N-type Ca2+ channels in rat PAG neurons is mediated by PTX-sensitive G proteins. These results indicate that μ-type opioid receptor modulates N-type HVA Ca2+ channels via PTX-sensitive G proteins in PAG neurons of rats.


1994 ◽  
Vol 72 (3) ◽  
pp. 1250-1259 ◽  
Author(s):  
S. Sugita ◽  
D. A. Baxter ◽  
J. H. Byrne

1. The serotonergic modulation of pleural sensory neurons in Aplysia is mediated via two second messenger systems: the adenosine cyclic monophosphate/protein kinase A (cAMP/PKA) and diacylglycerol/protein kinase C systems. Often membrane permeable derivatives of cAMP, such as 8-(4-parachlorophenylthio)-cAMP (pcpt-cAMP), have been used to investigate the role of cAMP/PKA in modulating sensory neurons. In light of recent findings that pcpt-cAMP may have cAMP-independent actions, we have reexamined the effects of pcpt-cAMP on the action potential and membrane currents of the sensory neurons. 2. Although pcpt-cAMP (500 microM to 1 mM) and serotonin (5-HT; 10 microM) induced comparable measures of spike broadening (an average increase above baseline of 29 and 40%, respectively), the broadening produced by the two was qualitatively different. Serotonin-induced broadening developed slowly over 9-12 min, was most prominent during later phases of the spike repolarization, and reduced the spike afterhyperpolarization. In contrast, pcpt-cAMP-induced broadening developed rapidly, was rather uniform throughout the repolarization phase of the spike, delayed the peak of the action potential, and increased the afterhyperpolarization. 3. Preexposure of sensory neurons to 5-HT did not occlude further spike broaden by subsequent application of pcpt-cAMP. Indeed the effects of the two were additive. In addition, the effects of pcpt-cAMP were not mimicked by another analogue of cAMP, 8-bromo-cAMP. Interestingly, most of the effects of pcpt-cAMP on the action potential were mimicked by 8-(4-parachlorophenyl-thio)-guanosine cyclic monophosphate (pcpt-cGMP), but not by 8-bromo-cGMP. 4. During voltage-clamp pulses to 20 mV, pcpt-cAMP reduced the membrane current throughout the voltage-clamp pulse, which was qualitatively different from the modulation of the membrane current by 5-HT. In addition, the pcpt-cAMP-induced reduction in the membrane current at the beginning of the pulse was much greater than that induced by 5-HT. Moreover, preexposure of sensory neurons to 5-HT did not occlude further reduction in the membrane current by subsequent application of pcpt-cAMP. 5. These results suggest that pcpt-cAMP has some mechanisms of action that are not shared by 5-HT or cAMP but are shared by pcpt-cGMP. In addition, these findings provide further evidence that results obtained with this compound should be interpreted with caution.


1998 ◽  
Vol 79 (2) ◽  
pp. 1108-1112 ◽  
Author(s):  
Scott C. Baraban ◽  
Philip A. Schwartzkroin

Baraban, Scott C. and Philip A. Schwartzkroin. Effects of hyposmolar solutions on membrane currents of hippocampal interneurons and mossy cells in vitro. J. Neurophysiol. 79: 1108–1112, 1998. Whole cell voltage-clamp recordings in rat hippocampal slices were used to investigate the effect of changes in extracellular osmolarity on voltage-activated potassium currents. Currents were evoked from oriens/alveus (O/A) interneurons, hilar interneurons, and mossy cells. Hyposmolar external solutions produced a significant potentiation of K+ current recorded from O/A and hilar interneurons, but not from mossy cells. Hyposmolar solutions also dramatically potentiated the spontaneous excitatory postsynaptic currents recorded from mossy cells. These results suggest that hippocampal excitability can be modulated by the complex actions exerted by changes in extracellular osmolarity.


1964 ◽  
Vol 17 (2) ◽  
pp. 388 ◽  
Author(s):  
GP Findlay

Experiments are described in which "voltage clamps" were applied to the "membrane" of O. australis cells comprising tonoplast and plasmalemma and also to the plasmalemma alone. The voltage-clamp system maintained the membrane potential at a predetermined level, and enabled a detailed analysis to be made of the transient electrical phenomena occurring during the action potential. A scarming technique is also described, by means of which the membrane currentpotential characteristics could be determined at any particular time during the transient activity of the membrane.


1980 ◽  
Vol 43 (6) ◽  
pp. 1700-1724 ◽  
Author(s):  
P. C. Schwindt ◽  
W. E. Crill

1. Membrane currents of normal and TEA-injected cat lumbar motoneurons were investigated using the technique of somatic voltage clamp. 2. The current-voltage (I-V) relation of healthy motoneurons contains a region of negative slope conductance caused by a persistent inward current component (Ii). In the most striking examples, Ii is net inward at some potentials between 10 and 30 mV positive to resting potential. 3. Near its activation threshold (greater than or equal to 10 mV positive to rest), Ii does not decrement during prolonged voltage steps and, in most cells, activates very slowly. Ii amplitude increases and time to peak Ii decreases with further small increments of depolarization, and Ii decrements during sustained voltage steps. Maximum Ii amplitude occurs 20--30 mV positive to rest in most cells. Ii is not visible at sufficiently large depolarizations. 4. Ii appears to be mixed with potassium current components at nearly every potential where it is visible. These include a slow outward current first activated near Ii activation threshold, a fast outward current additonally activated at larger depolarizing potentials, and a fast, transient outward current that obscures the true onset of Ii at nearly every potential. 5. Ii is not carried by sodium entering via the fast, transient channels and is present after pharmacological blockage of sodium currents. It is proposed that Ii is predominantly carried by calcium ions. 6. The presence of inward tail currents after repolarization from potentials that activate a steady outward current suggest that Ii remains present but hidden at large depolarizations. Ii inactivation was further investigated in TEA-injected motoneurons since Ii and the tail currents are more prominent in these cells. 7. Conventional recordings from TEA-injected motoneurons suggest that a prolonged, postspike plateau potential is maintained by a persistent inward current. Voltage-clamp data can account for the principal features of the plateau potential. 8. Voltage-clamp results in TEA-injected motoneurons suggest that Ii is subject to little or no inactivation at potentials less than or equal to 30 mV positive to rest and to partial inactivation, at most, at higher potentials during steps lasting less than or equal to 100 ms. The apparent decay of Ii during sustained depolarization is caused by the development of a larger outward current. 9. Ii is similar in several ways to a persistent calcium current observed in some molluscan neurons. Theoretical and experimental results suggest that Ii is generated predominantly in a local region under voltage control and that the observed membrane currents govern somatic membrane potential and cell behavior.


1974 ◽  
Vol 63 (2) ◽  
pp. 257-278 ◽  
Author(s):  
Joseph Bastian ◽  
Shigehiro Nakajima

The double sucrose-gap method was applied to single muscle fibers of Xenopus. From the "artificial node" of the fiber, action potentials were recorded under current-clamping condition together with twitches of the node. The action potentials were stored on magnetic tape. The node was then made inexcitable by tetrodotoxin or by a sodium-free solution, and the wave form of the action potential stored on magnetic tape was imposed on the node under voltage-clamp condition (simulated AP). The twitch height caused by the simulated AP's was always smaller than the twitch height produced by the real action potentials, the ratio being about 0.3 at room temperature. The results strongly suggest that the transverse tubular system is excitable and is necessary for the full activation of twitch, and that the action potential of the tubules contributes to about 70 % of the total mechanical output of the normal isotonic twitch at 20°C. Similar results were obtained in the case of tetanic contraction. At a temperature near 10°C, twitches produced by the simulated AP were not very different (85 % of control amplitude) from the twitches caused by real action potentials. This indicates that the excitability of the tubules becomes less necessary for the full activation of twitch as the temperature becomes lower.


Sign in / Sign up

Export Citation Format

Share Document