scholarly journals Action Potential in the Transverse Tubules and Its Role in the Activation of Skeletal Muscle

1974 ◽  
Vol 63 (2) ◽  
pp. 257-278 ◽  
Author(s):  
Joseph Bastian ◽  
Shigehiro Nakajima

The double sucrose-gap method was applied to single muscle fibers of Xenopus. From the "artificial node" of the fiber, action potentials were recorded under current-clamping condition together with twitches of the node. The action potentials were stored on magnetic tape. The node was then made inexcitable by tetrodotoxin or by a sodium-free solution, and the wave form of the action potential stored on magnetic tape was imposed on the node under voltage-clamp condition (simulated AP). The twitch height caused by the simulated AP's was always smaller than the twitch height produced by the real action potentials, the ratio being about 0.3 at room temperature. The results strongly suggest that the transverse tubular system is excitable and is necessary for the full activation of twitch, and that the action potential of the tubules contributes to about 70 % of the total mechanical output of the normal isotonic twitch at 20°C. Similar results were obtained in the case of tetanic contraction. At a temperature near 10°C, twitches produced by the simulated AP were not very different (85 % of control amplitude) from the twitches caused by real action potentials. This indicates that the excitability of the tubules becomes less necessary for the full activation of twitch as the temperature becomes lower.

1983 ◽  
Vol 244 (3) ◽  
pp. H341-H350
Author(s):  
C. H. Conrad ◽  
R. G. Mark ◽  
O. H. Bing

We studied the effects of brief periods (20-30 min) of hypoxia in the presence of 5 and 50 mM glucose and of glycolytic blockade (10(-4) M iodoacetic acid, IAA) on action potentials, membrane currents, and mechanical activity in rat ventricular papillary muscles using a single sucrose gap voltage-clamp technique. Steady-state outward current (iss) was determined at the end of a 500-ms clamp to the test potential following a 600-ms clamp to a holding potential of -50 mV. In the presence of 5 mM glucose, hypoxia resulted in a decrease in action potential duration (APD) and an increase in iss (on the order of 60% at 0 mV) over the potential range studied. The increase in iss did not appear to be due to an increase in leakage current or to a change in the cable properties of the preparation. Addition of 50 mM glucose prevented the change in both APD and iss with hypoxia. In addition, glycolytic blockade with IAA did not alter iss in the presence of oxygen. We conclude that an increase in iss appears to be a major factor in the abbreviation of rat ventricular action potential seen with hypoxia. Glycolysis appears to be a sufficient (with 50 mM glucose) but not necessary source of energy for the maintenance of normal iss.


1996 ◽  
Vol 108 (6) ◽  
pp. 525-535 ◽  
Author(s):  
F Kawai ◽  
T Kurahashi ◽  
A Kaneko

Mechanisms underlying action potential generation in the newt olfactory receptor cell were investigated by using the whole-cell version of the patch-clamp technique. Isolated olfactory cells had a resting membrane potential of -70 +/- 9 mV. Injection of a depolarizing current step triggered action potentials under current clamp condition. The amplitude of the action potential was reduced by lowering external Na+ concentration. After a complete removal of Na+, however, cells still showed action potentials which was abolished either by Ca2+ removal or by an application of Ca2+ channel blocker (Co2+ or Ni2+), indicating an involvement of Ca2+ current in spike generation of newt olfactory receptor cells. Under the voltage clamp condition, depolarization of the cell to -40 mV from the holding voltage of -100 mV induced a fast transient inward current, which consisted of Na+ (INa) and T-type Ca2+ (ICa.T) currents. The amplitude of ICa,T was about one fourth of that of INa. Depolarization to more positive voltages also induced L-type Ca2+ current (ICa,L). ICa,L was as small as a few pA in normal Ringer solution. The activating voltage of ICa,T was approximately 10 mV more negative than that of INa. Under current clamp, action potentials generated by a least effective depolarization was almost completely blocked by 0.1 mM Ni2+ (a specific T-type Ca2+ channel blocker) even in the presence of Na+. These results suggest that ICa,T contributes to action potential in the newt olfactory receptor cell and lowers the threshold of spike generation.


1988 ◽  
Vol 254 (3) ◽  
pp. R443-R452
Author(s):  
R. M. Siegel ◽  
R. I. Birks

Sucrose gap recordings were made from vagus nerve in rabbit to examine the mechanisms underlying the generation of the hyperpolarization that follows a burst of evoked action potentials in unmyelinated C fibers. Analysis of the posttetanic hyperpolarization was made by fitting the membrane potential changes with the sum of two exponential components. The posttetanic hyperpolarization consisted of two separable components with time constants of approximately 0.5 and 30 s. The slower exponentially decaying component was dependent on an increase in electrogenic sodium pumping as shown by the effect of ouabain and changes in extracellular chloride. The faster-decaying exponential component was caused by a potassium conductance as shown by the effect of varied extracellular potassium. This potassium conductance appears to be novel as its dynamics vary with the frequency and duration of the burst yet increases in reduced calcium. It is suggested that this slow decaying and modifiable potassium conductance can play a role in modulation of preganglionic and presynaptic action potential conduction.


1986 ◽  
Vol 251 (2) ◽  
pp. H297-H306 ◽  
Author(s):  
R. F. Gilmour ◽  
J. J. Salata ◽  
J. R. Davis

Canine cardiac Purkinje fibers and atrial trabeculae and rat and cat papillary muscles superfused with a hyperkalemic, hypoxic, and acidotic Tyrode solution were depolarized to membrane potentials (-70 to -60 mV) at which action potential amplitude declined as the coupling intervals of pacing stimuli were prolonged from 500 to 4,500 ms. The rate-related decline of action potential amplitude appeared to be due to time-dependent recovery of the early outward current rather than to a decrease in inward calcium current, since it was prevented by 4-aminopyridine (1.0 mM), but not by isoproterenol (1.0 microM), caffeine (5.0 mM), or CsCl (5-20 mM) and it was accompanied by an exponential increase of developed tension. Experiments using Purkinje fibers mounted in a single sucrose gap chamber demonstrated that the rate-related decline of action potential amplitude was maximal at membrane potentials between -70 and -40 mV and was negligible at less negative or more negative membrane potentials. These results may pertain to the mechanism for deceleration-dependent bundle branch block.


Author(s):  
Christof Koch

The vast majority of nerve cells generate a series of brief voltage pulses in response to vigorous input. These pulses, also referred to as action potentials or spikes, originate at or close to the cell body, and propagate down the axon at constant velocity and amplitude. Fig. 6.1 shows the shape of the action potential from a number of different neuronal and nonneuronal preparations. Action potentials come in a variety of shapes; common to all is the all-or-none depolarization of the membrane beyond 0. That is, if the voltage fails to exceed a particular threshold value, no spike is initiated and the potential returns to its baseline level. If the voltage threshold is exceeded, the membrane executes a stereotyped voltage trajectory that reflects membrane properties and not the input. As evident in Fig. 6.1, the shape of the action potential can vary enormously from cell type to cell type. When inserting an electrode into a brain, the small all-or-none electrical events one observes extracellularly are usually due to spikes that are initiated close to the cell body and that propagate along the axons. When measuring the electrical potential across the membrane, these spikes peak between +10 and +30 mV and are over (depending on the temperature) within 1 or 2 msec. Other all-or-none events, such as the complex spikes in cerebellar Purkinje cells or bursting pyramidal cells in cortex, show a more complex wave form with one or more fast spikes superimposed onto an underlying, much slower depolarization. Finally, under certain conditions, the dendritic membrane can also generate all-or-none events that are much slower than somatic spikes, usually on the order to 50-100 msec or longer. We will treat these events and their possible significance in Chap. 19. Only a small fraction of all neurons is unable—under physiological conditions—to generate action potentials, making exclusive use of graded signals. Examples of such nonspiking cells, usually spatially compact, can be found in the distal retina (e.g., bipolar, horizontal, and certain types of amacrine cells) and many neurons in the sensory-motor pathway of invertebrates (Roberts and Bush, 1981).


2005 ◽  
Vol 94 (6) ◽  
pp. 4430-4440 ◽  
Author(s):  
Sofija Andjelic ◽  
Vincent Torre

Calcium dynamics in leech neurons were studied using a fast CCD camera. Fluorescence changes (Δ F/ F) of the membrane impermeable calcium indicator Oregon Green were measured. The dye was pressure injected into the soma of neurons under investigation. Δ F/ F caused by a single action potential (AP) in mechanosensory neurons had approximately the same amplitude and time course in the soma and in distal processes. By contrast, in other neurons such as the Anterior Pagoda neuron, the Annulus Erector motoneuron, the L motoneuron, and other motoneurons, APs evoked by passing depolarizing current in the soma produced much larger fluorescence changes in distal processes than in the soma. When APs were evoked by stimulating one distal axon through the root, Δ F/ F was large in all distal processes but very small in the soma. Our results show a clear compartmentalization of calcium dynamics in most leech neurons in which the soma does not give propagating action potentials. In such cells, the soma, while not excitable, can affect information processing by modulating the sites of origin and conduction of AP propagation in distal excitable processes.


2007 ◽  
Vol 98 (6) ◽  
pp. 3666-3676 ◽  
Author(s):  
Hai Xia Zhang ◽  
Liu Lin Thio

Although extracellular Zn2+ is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn2+ modulation of GlyR may be especially important in the hippocampus where presynaptic Zn2+ is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 μM Zn2+, a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 μM glycine (EC25) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 μM Zn2+. At least part of this effect resulted from Zn2+ enhancing the GlyR-induced decrease in input resistance. Sustained 20 μM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg2+. However, sustained 20 μM glycine applications depressed neuronal bursting in 1 μM Zn2+. Zn2+ did not enhance the inhibitory effects of sustained 60 μM glycine (EC70) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn2+ chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn2+ may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.


1965 ◽  
Vol 48 (5) ◽  
pp. 797-823 ◽  
Author(s):  
L. Barr ◽  
M. M. Dewey ◽  
W. Berger

The hypothesis that the nexus is a specialized structure allowing current flow between cell interiors is corroborated by concomitant structural changes of the nexus and changes of electrical coupling between cells due to soaking in solutions of abnormal tonicity. Fusiform frog atrial fibers are interconnected by nexuses. The nexuses, desmosomes, and regions of myofibrillar attachment of this muscle are not associated in a manner similar to intercalated discs of guinea pig cardiac muscle. Indeed, nexuses occur wherever cell membranes are closely apposed. Action potentials of frog atrial bundles detected extracellularly across a sucrose gap change from monophasic to diphasic when the gap is shunted by a resistor. This indicates that action potentials are transmitted across the gap when sufficient excitatory current is allowed to flow across the gap. When the sucrose solution in the gap is made hypertonic, propagation past the gap is blocked and the resistance between the cells in the gap increases. Electron micrographs demonstrate that the nexuses of frog atrium and guinea pig ventricle are ruptured by hypertonic solutions.


1974 ◽  
Vol 60 (3) ◽  
pp. 653-671
Author(s):  
D. B. SATTELLE

1. A mean resting potential of -53.3 (S.D. ±2.7) mV has been obtained for 23 neurones of the parietal and visceral ganglia of Limnaea stagnalis (L.). Changes in the resting potential of between 28 and 43 mV accompany tenfold changes in [K+0]. A modified constant-field equation accounts for the behaviour of most cells over the range of external potassium concentrations from 0-5 to 10.o mM/1. Mean values have been estimated for [K+1, 56.2 (S.D.± 9-0) mM/1 and PNa/PK, 0-117 (S.D.±0-028). 2. Investigations on the ionic basis of action potential generation have revealed two cell types which can be distinguished according to the behaviour of their action potentials in sodium-free Ringer. Sodium-sensitive cells are unable to support action potentials for more than 8-10 min in the absence of sodium. Sodium slopes of between 29 and 37 mV per decade change in [Na+0] have been found for these cells. Tetrodotoxin (5 x 10-5 M) usually blocks action potentials in these neurones. Calcium-free inger produces a marked reduction in the overshoot potential and calcium slopes of about 18 mV per decade change in [Ca2+o] are found. Manganous chloride only partially reduces the action potential overshoot in these cells at concentrations of 10 mM/l. 3. Sodium-insensitive neurones maintain action potentials in the absence of external sodium. Stimulation only slightly reduces the amplitude of the action potential under these conditions and such cells are readily accessible to potassium ions in the bathing medium. A calcium-slope of 29 mV per decade change in [Ca2+o] has been observed in these cells in the absence of external sodium. 4. It is concluded that both sodium and calcium ions can be involved in the generation of the action potential in neurones of Limnaea stagnate, their relative contribution varying in different cells.


Sign in / Sign up

Export Citation Format

Share Document