scholarly journals Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices.

1992 ◽  
Vol 458 (1) ◽  
pp. 261-287 ◽  
Author(s):  
D Colquhoun ◽  
P Jonas ◽  
B Sakmann
2020 ◽  
Author(s):  
Jithin D. Nair ◽  
Ellen Braksator ◽  
Busra P Yucel ◽  
Richard Seager ◽  
Jack R. Mellor ◽  
...  

AbstractHere we report that sustained activation of GluK2 subunit-containing kainate receptors leads to AMPA receptor endocytosis and a novel form of long-term depression (KAR-LTDAMPAR) in hippocampal neurons. The KAR-evoked loss of surface AMPA receptors requires KAR channel activity and is occluded by the blockade of PKC or PKA. Moreover, in acute hippocampal slices, kainate invoked LTD of AMPA EPSCs. These data, together with our previously reported KAR-LTPAMPAR, demonstrate that KARs bidirectionally regulate synaptic AMPARs and synaptic plasticity.


2021 ◽  
Author(s):  
Czarina C Ramos ◽  
Stefano Lutzu ◽  
Miwako Yamasaki ◽  
Yuchio Yanagawa ◽  
Masahiko Watanabe ◽  
...  

Mossy cells (MCs) of the dentate gyrus (DG) are key components of an excitatory associative circuit established by reciprocal connections with dentate granule cells (GCs). MCs are implicated in place field encoding, pattern separation and novelty detection, as well as in brain disorders such as temporal lobe epilepsy and depression. Despite their functional relevance, little is known about the determinants that control MC activity. Here, we examined whether MCs express functional kainate receptors (KARs), a subtype of glutamate receptors involved in neuronal development, synaptic transmission and epilepsy. Using mouse hippocampal slices, we found that bath application of submicromolar and micromolar concentrations of the KAR agonist kainic acid induced inward currents and robust MC firing. These effects were abolished in GluK2 KO mice, indicating the presence of functional GluK2-containing KARs in MCs. In contrast to CA3 pyramidal cells, which are structurally and functionally similar to MCs, and express synaptic KARs at mossy fiber (MF) inputs (i.e., GC axons), we found no evidence for KAR-mediated transmission at MF-MC synapses, indicating that most KARs at MCs are extrasynaptic. Immunofluorescence and immunoelectron microscopy analyses confirmed the extrasynaptic localization of GluK2-15 containing KARs in MCs. Finally, blocking glutamate transporters, a manipulation that increases extracellular levels of endogenous glutamate, was sufficient to induce KAR-mediated inward currents in MCs, suggesting that MC-KARs can be activated by increases in ambient glutamate. Our findings provide the first direct evidence of functional extrasynaptic KARs at a critical excitatory neuron of the hippocampus.


2011 ◽  
Vol 37 (11) ◽  
pp. 1240-1247 ◽  
Author(s):  
Xin-Wei GONG ◽  
Fan YANG ◽  
Jian-Sheng LIU ◽  
Qin-Chi LU ◽  
Hai-Qing GONG ◽  
...  

2018 ◽  
Vol 17 (6) ◽  
pp. 404-411 ◽  
Author(s):  
Syeda Mehpara Farhat ◽  
Touqeer Ahmed

Background: Aluminum (Al) causes neurodegeneration and its toxic effects on cholinergic system in the brain is well documented. However, it is unknown whether and how Al changes oscillation patterns, driven by the cholinergic system, in the hippocampus. Objective: We studied acute effects of Al on nicotinic acetylcholine receptors (nAChRs)-mediated modulation of persistent gamma oscillations in the hippocampus. Method: The field potential recording was done in CA3 area of acute hippocampal slices. Results: Carbachol-induced gamma oscillation peak power increased (1.32±0.09mV2/Hz, P<0.01) in control conditions (without Al) by application of 10µM nicotine as compared to baseline value normalized to 1. This nicotine-induced facilitation of gamma oscillation peak power was found to depend on non-α7 nAChRs. In slices with Al pre-incubation for three to four hours, gamma oscillation peak power was reduced (5.4±1.8mV2/Hz, P<0.05) and facilitatory effect of nicotine on gamma oscillation peak power was blocked as compared to the control (18.06±2.1mV2/Hz) or one hour Al pre-incubated slices (11.3±2.5mV2/Hz). Intriguingly wash-out, after three to four hours of Al incubation, failed to restore baseline oscillation power and its facilitation by nicotine as no difference was observed in gamma oscillation peak power between Al wash-out slices (3.4±1.1mV2/Hz) and slices without washout (3.6±0.9mV2/Hz). Conclusion: This study shows that at cellular level, exposure of hippocampal tissue to Al compromised nAChR-mediated facilitation of cholinergic hippocampal gamma oscillations. Longer in vitro Al exposure caused permanent changes in hippocampal oscillogenic circuitry and changed its sensitivity to nAChR-modulation. This study will help to understand the possible mechanism of cognitive decline induced by Al.


Author(s):  
G. Brent Dawe ◽  
Patricia M. G. E. Brown ◽  
Derek Bowie

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate-type glutamate receptors (AMPARs and KARs) are dynamic ion channel proteins that govern neuronal excitation and signal transduction in the mammalian brain. The four AMPAR and five KAR subunits can heteromerize with other subfamily members to create several combinations of tetrameric channels with unique physiological and pharmacological properties. While both receptor classes are noted for their rapid, millisecond-scale channel gating in response to agonist binding, the intricate structural rearrangements underlying their function have only recently been elucidated. This chapter begins with a review of AMPAR and KAR nomenclature, topology, and rules of assembly. Subsequently, receptor gating properties are outlined for both single-channel and synaptic contexts. The structural biology of AMPAR and KAR proteins is also discussed at length, with particular focus on the ligand-binding domain, where allosteric regulation and alternative splicing work together to dictate gating behavior. Toward the end of the chapter there is an overview of several classes of auxiliary subunits, notably transmembrane AMPAR regulatory proteins and Neto proteins, which enhance native AMPAR and KAR expression and channel gating, respectively. Whether bringing an ion channel novice up to speed with glutamate receptor theory and terminology or providing a refresher for more seasoned biophysicists, there is much to appreciate in this summation of work from the glutamate receptor field.


2021 ◽  
Vol 22 (15) ◽  
pp. 8091
Author(s):  
Grace Jang ◽  
M. Bruce MacIver

Ketamine is a clinical anesthetic and antidepressant. Although ketamine is a known NMDA receptor antagonist, the mechanisms contributing to antidepression are unclear. This present study examined the loci and duration of ketamine’s actions, and the involvement of NMDA receptors. Local field potentials were recorded from the CA1 region of mouse hippocampal slices. Ketamine was tested at antidepressant and anesthetic concentrations. Effects of NMDA receptor antagonists APV and MK-801, GABA receptor antagonist bicuculline, and a potassium channel blocker TEA were also studied. Ketamine decreased population spike amplitudes during application, but a long-lasting increase in amplitudes was seen during washout. Bicuculline reversed the acute effects of ketamine, but the washout increase was not altered. This long-term increase was statistically significant, sustained for >2 h, and involved postsynaptic mechanisms. A similar effect was produced by MK-801, but was only partially evident with APV, demonstrating the importance of the NMDA receptor ion channel block. TEA also produced a lasting excitability increase, indicating a possible involvement of potassium channel block. This is this first report of a long-lasting increase in excitability following ketamine exposure. These results support a growing literature that increased GABA inhibition contributes to ketamine anesthesia, while increased excitatory transmission contributes to its antidepressant effects.


Sign in / Sign up

Export Citation Format

Share Document