scholarly journals Effects of aerobic training on pyruvate dehydrogenase and pyruvate dehydrogenase kinase in human skeletal muscle

2004 ◽  
Vol 557 (2) ◽  
pp. 559-570 ◽  
Author(s):  
Paul J. LeBlanc ◽  
Sandra J. Peters ◽  
Rebecca J. Tunstall ◽  
David Cameron-Smith ◽  
George J. F. Heigenhauser
2005 ◽  
Vol 98 (1) ◽  
pp. 350-355 ◽  
Author(s):  
Erin A. Turvey ◽  
George J. F. Heigenhauser ◽  
Michelle Parolin ◽  
Sandra J. Peters

We tested the hypothesis that a high-fat diet (75% fat; 5% carbohydrates; 20% protein), for which 15% of the fat content was substituted with n-3 fatty acids, would not exhibit the diet-induced increase in pyruvate dehydrogenase kinase (PDK) activity, which is normally observed in human skeletal muscle. The fat content was the same in both the regular high-fat diet (HF) and in the n-3-substituted diet (N3). PDK activity increased after both high-fat diets, but the increase was attenuated after the N3 diet (0.051 ± 0.007 and 0.218 ± 0.047 min−1 for pre- and post-HF, respectively; vs. 0.073 ± 0.016 and 0.133 ± 0.032 min−1 for pre- and post-N3, respectively). However, the active form of pyruvate dehydrogenase (PDHa) activity decreased to a similar extent in both conditions (0.93 ± 0.17 and 0.43 ± 0.09 mmol/kg wet wt pre- and post-HF; vs. 0.87 ± 0.19 and 0.39 ± 0.05 mmol/kg wet wt pre- and post-N3, respectively). This suggested that the difference in PDK activity did not affect PDHa activation in the basal state, and it was regulated by intramitochondrial effectors, primarily muscle pyruvate concentration. Muscle glycogen content was consistent throughout the study, before and after both diet conditions, whereas muscle glucose-6-phosphate, glycerol-3-phosphate, lactate, and pyruvate were decreased after the high-fat diets. Plasma triglycerides decreased after both high-fat diets but decreased to a greater extent after the N3, whereas plasma free fatty acids increased after both diets, but to a lesser extent after the N3. In summary, PDK activity is decreased after a high-fat diet that is rich in n-3 fatty acids, although PDHa activity was unaltered. In addition, our data demonstrated that the hypolipidemic effect of n-3 fatty acids occurs earlier (3 days) than previously reported and is evident even when the diet has 75% of its total energy derived from fat.


1998 ◽  
Vol 275 (6) ◽  
pp. E980-E986 ◽  
Author(s):  
Sandra J. Peters ◽  
Timothy A. St. Amand ◽  
Richard A. Howlett ◽  
George J. F. Heigenhauser ◽  
Lawrence L. Spriet

To characterize human skeletal muscle enzymatic adaptation to a low-carbohydrate, high-fat, and high-protein diet (LCD), subjects consumed a eucaloric diet consisting of 5% of the total energy intake from carbohydrate, 63% from fat, and 33% from protein for 6 days compared with their normal diet (52% carbohydrate, 33% fat, and 14% protein). Biopsies were taken from the vastus lateralis before and after 3 and 6 days on a LCD. Intact mitochondria were extracted from fresh muscle and analyzed for pyruvate dehydrogenase (PDH) kinase, total PDH, and carnitine palmitoyltransferase I activities and mitochondrial ATP production rate (using carbohydrate and fat substrates). β-Hydroxyacyl CoA dehydrogenase, active PDH (PDHa), and citrate synthase activities were also measured on whole muscle homogenates. PDH kinase (PDHK) was calculated as the absolute value of the apparent first-order rate constant of the inactivation of PDH in the presence of 0.3 mM Mg2+-ATP. PDHK increased dramatically from 0.10 ± 0.02 min−1 to 0.35 ± 0.09 min−1 at 3 days and 0.49 ± 0.06 min−1 after 6 days. Resting PDHa activity decreased from 0.63 ± 0.17 to 0.17 ± 0.04 mmol ⋅ min−1 ⋅ kg−1after 6 days on the diet, whereas total PDH activity did not change. Activities for all other enzymes were unaltered by the LCD. In summary, severe deficiency of dietary carbohydrate combined with a twofold increase in dietary fat and protein caused a rapid three- to fivefold increase in PDHK activity in human skeletal muscle. The increased PDHK activity downregulated the amount of PDH in its active form at rest and decreased carbohydrate metabolism. However, an increase in the activities of enzymes involved in fatty acid oxidation did not occur.


2000 ◽  
Vol 279 (4) ◽  
pp. E806-E814 ◽  
Author(s):  
Henriette Pilegaard ◽  
George A. Ordway ◽  
Bengt Saltin ◽  
P. Darrell Neufer

Exercise training elicits a number of adaptive changes in skeletal muscle that result in an improved metabolic efficiency. The molecular mechanisms mediating the cellular adaptations to exercise training in human skeletal muscle are unknown. To test the hypothesis that recovery from exercise is associated with transcriptional activation of specific genes, six untrained male subjects completed 60–90 min of exhaustive one-legged knee extensor exercise for five consecutive days. On day 5, nuclei were isolated from biopsies of the vastus lateralis muscle of the untrained and the trained leg before exercise and from the trained leg immediately after exercise and after 15 min, 1 h, 2 h, and 4 h of recovery. Transcriptional activity of the uncoupling protein 3 (UCP3), pyruvate dehydrogenase kinase 4 (PDK4), and heme oxygenase-1 (HO-1) genes (relative to β-actin) increased by three- to sevenfold in response to exercise, peaking after 1–2 h of recovery. Increases in mRNA levels followed changes in transcription, peaking between 2 and 4 h after exercise. Lipoprotein lipase and carnitine pamitoyltransferase I gene transcription and mRNA levels showed similar but less dramatic induction patterns, with increases ranging from two- to threefold. In a separate study, a single 4-h bout of cycling exercise ( n = 4) elicited from 5 to >20-fold increases in UCP3, PDK4, and HO-1 transcription, suggesting that activation of these genes may be related to the duration or intensity of exercise. These data demonstrate that exercise induces transient increases in transcription of metabolic genes in human skeletal muscle. Moreover, the findings suggest that the cumulative effects of transient increases in transcription during recovery from consecutive bouts of exercise may represent the underlying kinetic basis for the cellular adaptations associated with exercise training.


2011 ◽  
Vol 111 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Lorenzo K. Love ◽  
Paul J. LeBlanc ◽  
J. Greig Inglis ◽  
Nicolette S. Bradley ◽  
Jon Choptiany ◽  
...  

Pyruvate dehydrogenase (PDH) is a mitochondrial enzyme responsible for regulating the conversion of pyruvate to acetyl-CoA for use in the tricarboxylic acid cycle. PDH is regulated through phosphorylation and inactivation by PDH kinase (PDK) and dephosphorylation and activation by PDH phosphatase (PDP). The effect of endurance training on PDK in humans has been investigated; however, to date no study has examined the effect of endurance training on PDP in humans. Therefore, the purpose of this study was to examine differences in PDP activity and PDP1 protein content in human skeletal muscle across a range of muscle aerobic capacities. This association is important as higher PDP activity and protein content will allow for increased activation of PDH, and carbohydrate oxidation. The main findings of this study were that 1) PDP activity ( r2 = 0.399, P = 0.001) and PDP1 protein expression ( r2 = 0.153, P = 0.039) were positively correlated with citrate synthase (CS) activity as a marker for muscle aerobic capacity; 2) E1α ( r2 = 0.310, P = 0.002) and PDK2 protein ( r2 = 0.229, P =0.012) are positively correlated with muscle CS activity; and 3) although it is the most abundant isoform, PDP1 protein content only explained ∼18% of the variance in PDP activity ( r2 = 0.184, P = 0.033). In addition, PDP1 in combination with E1α explained ∼38% of the variance in PDP activity ( r2 = 0.383, P = 0.005), suggesting that there may be alternative regulatory mechanisms of this enzyme other than protein content. These data suggest that with higher muscle aerobic capacity (CS activity) there is a greater capacity for carbohydrate oxidation (E1α), in concert with higher potential for PDH activation (PDP activity).


1976 ◽  
Vol 158 (2) ◽  
pp. 203-210 ◽  
Author(s):  
S A Hagg ◽  
S I Taylor ◽  
N B Ruberman

1. The interconversion of pyruvate dehydrogenase between its inactive phosphorylated and active dephosphorylated forms was studied in skeletal muscle. 2. Exercise, induced by electrical stimulation of the sciatic nerve (5/s), increased the measured activity of (active) pyruvate dehydrogenase threefold in intact anaesthetized rated within 2 min. No further increase was seen after 15 min of stimulation. 3. In the perfused rat hindquarter, (active) pyruvate dehydrogenase activity was decreased by 50% in muscle of starved and diabetic rats. Exercise produced a twofold increase in its activity in all groups; however, the relative differences between fed, starved and diabetic groups persisted. 4. Perfusion of muslce with acetoacetate (2 mM) decreased (active) pyruvate dehydrogenase activity by 50% at rest but not during exercise. 5. Whole-tissue concentrations of pyruvate and citrate, inhibitors of (active) pyruvate dehydrogenase kinase and (inactive) pyruvate dehydrogenase phosphate phosphatase respectively, were not altered by excerise. A decrease in the ATP/ADP ratio was observed, but did not appear to be sufficient to account for the increase in (active) pyruvate dehydrogenase activity. 6. The results suggest that interconversion of the phosphorylated and dephosphorylated forms of pyruvate dehydrogenase plays a major role in the regulation of pyruvate oxidation by eomparison of enzyme activity with measurements of lactate oxidation in the perfused hindquarter [see the preceding paper, Berger et al. (1976)] suggest that pyruvate oxidation is also modulated by the concentrations of substrates, cofactors and inhibitors of (active) pyruvate dehydrogenase activity.


2000 ◽  
Vol 346 (3) ◽  
pp. 651-657 ◽  
Author(s):  
Mary C. SUGDEN ◽  
Alexandra KRAUS ◽  
Robert A. HARRIS ◽  
Mark J. HOLNESS

Using immunoblot analysis with antibodies raised against recombinant pyruvate dehydrogenase kinase (PDK) isoenzymes PDK2 and PDK4, we demonstrate selective changes in PDK isoenzyme expression in slow-twitch versus fast-twitch skeletal muscle types in response to prolonged (48 h) starvation and refeeding after starvation. Starvation increased PDK activity in both slow-twitch (soleus) and fast-twitch (anterior tibialis) skeletal muscle and was associated with loss of sensitivity of PDK to inhibition by pyruvate, with a greater effect in anterior tibialis. Starvation significantly increased PDK4 protein expression in both soleus and anterior tibialis, with a greater response in anterior tibialis. Starvation did not effect PDK2 protein expression in soleus, but modestly increased PDK2 expression in anterior tibialis. Refeeding for 4 h partially reversed the effect of 48-h starvation on PDK activity and PDK4 expression in both soleus and anterior tibialis, but the response was more marked in soleus than in anterior tibialis. Pyruvate sensitivity of PDK activity was also partially restored by refeeding, again with the greater response in soleus. It is concluded that targeted regulation of PDK4 isoenzyme expression in skeletal muscle in response to starvation and refeeding underlies the modulation of the regulatory characteristics of PDK in vivo. We propose that switching from a pyruvate-sensitive to a pyruvate-insensitive PDK isoenzyme in starvation (a) maintains a sufficiently high pyruvate concentration to ensure that the glucose → alanine → glucose cycle is not impaired, and (b) may ‘spare’ pyruvate for anaplerotic entry into the tricarboxylic acid cycle to support the entry of acetyl-CoA derived from fatty acid (FA) oxidation into the tricarboxylic acid cycle. We further speculate that FA oxidation by skeletal muscle is both forced and facilitated by upregulation of PDK4, which is perceived as an essential component of the operation of the glucose-FA cycle in starvation.


2019 ◽  
Vol 317 (4) ◽  
pp. R513-R520 ◽  
Author(s):  
Alexander L. Pendleton ◽  
Laurel R. Humphreys ◽  
Melissa A. Davis ◽  
Leticia E. Camacho ◽  
Miranda J. Anderson ◽  
...  

Fetal sheep with placental insufficiency-induced intrauterine growth restriction (IUGR) have lower fractional rates of glucose oxidation and greater gluconeogenesis, indicating lactate shuttling between skeletal muscle and liver. Suppression of pyruvate dehydrogenase ( PDH) activity was proposed because of greater pyruvate dehydrogenase kinase (PDK) 4 and PDK1 mRNA concentrations in IUGR muscle. Although PDK1 and PDK4 inhibit PDH activity to reduce pyruvate metabolism, PDH protein concentrations and activity have not been examined in skeletal muscle from IUGR fetuses. Therefore, we evaluated the protein concentrations and activity of PDH and the kinases and phosphatases that regulate PDH phosphorylation status in the semitendinosus muscle from placenta insufficiency-induced IUGR sheep fetuses and control fetuses. Immunoblots were performed for PDH, phosphorylated PDH (E1α), PDK1, PDK4, and pyruvate dehydrogenase phosphatase 1 and 2 (PDP1 and PDP2, respectively). Additionally, the PDH, lactate dehydrogenase (LDH), and citrate synthase (CS) enzymatic activities were measured. Phosphorylated PDH concentrations were 28% lower (P < 0.01) and PDH activity was 67% greater (P < 0.01) in IUGR fetal muscle compared with control. PDK1, PDK4, PDP1, PDP2, and PDH concentrations were not different between groups. CS and LDH activities were also unaffected. Contrary to the previous speculation, PDH activity was greater in skeletal muscle from IUGR fetuses, which parallels lower phosphorylated PDH. Therefore, greater expression of PDK1 and PDK4 mRNA did not translate to greater PDK1 or PDK4 protein concentrations or inhibition of PDH as proposed. Instead, these findings show greater PDH activity in IUGR fetal muscle, which indicates that alternative regulatory mechanisms are responsible for lower pyruvate catabolism.


2018 ◽  
Vol 6 (17) ◽  
pp. e13868 ◽  
Author(s):  
Daniil V. Popov ◽  
Evgeny A. Lysenko ◽  
Roman O. Bokov ◽  
Maria A. Volodina ◽  
Nadia S. Kurochkina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document