respiratory proteins
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Enrique Rodríguez ◽  
Finley Grover Thomas ◽  
M. Florencia Camus ◽  
Nick Lane

Mitochondrial function depends on direct interactions between respiratory proteins encoded by genes in two genomes, mitochondrial and nuclear, which evolve in very different ways. Serious incompatibilities between these genomes can have severe effects on development, fitness and viability. The effect of subtle mitonuclear mismatches has received less attention, especially when subject to mild physiological stress. Here, we investigate how two distinct physiological stresses, metabolic stress (high-protein diet) and redox stress [the glutathione precursor N-acetyl cysteine (NAC)], affect development time, egg-to-adult viability, and the mitochondrial physiology of Drosophila larvae with an isogenic nuclear background set against three mitochondrial DNA (mtDNA) haplotypes: one coevolved (WT) and two slightly mismatched (COX and BAR). Larvae fed the high-protein diet developed faster and had greater viability in all haplotypes. The opposite was true of NAC-fed flies, especially those with the COX haplotype. Unexpectedly, the slightly mismatched BAR larvae developed fastest and were the most viable on both treatments, as well as control diets. These changes in larval development were linked to a shift to complex I-driven mitochondrial respiration in all haplotypes on the high-protein diet. In contrast, NAC increased respiration in COX larvae but drove a shift toward oxidation of proline and succinate. The flux of reactive oxygen species was increased in COX larvae treated with NAC and was associated with an increase in mtDNA copy number. Our results support the notion that subtle mitonuclear mismatches can lead to diverging responses to mild physiological stress, undermining fitness in some cases, but surprisingly improving outcomes in other ostensibly mismatched fly lines.


2021 ◽  
Author(s):  
Ana Moya-Beltrán ◽  
Simón Beard ◽  
Camila Rojas-Villalobos ◽  
Francisco Issotta ◽  
Yasna Gallardo ◽  
...  

AbstractMembers of the genus Acidithiobacillus, now ranked within the class Acidithiobacillia, are model bacteria for the study of chemolithotrophic energy conversion under extreme conditions. Knowledge of the genomic and taxonomic diversity of Acidithiobacillia is still limited. Here, we present a systematic analysis of nearly 100 genomes from the class sampled from a wide range of habitats. Some of these genomes are new and others have been reclassified on the basis of advanced genomic analysis, thus defining 19 Acidithiobacillia lineages ranking at different taxonomic levels. This work provides the most comprehensive classification and pangenomic analysis of this deep-branching class of Proteobacteria to date. The phylogenomic framework obtained illuminates not only the evolutionary past of this lineage, but also the molecular evolution of relevant aerobic respiratory proteins, namely the cytochrome bo3 ubiquinol oxidases.


2020 ◽  
Vol 11 ◽  
Author(s):  
Javier Torregrosa-Crespo ◽  
Carmen Pire ◽  
David J. Richardson ◽  
Rosa María Martínez-Espinosa

Many proteins and enzymes involved in denitrification in haloarchaea can be inferred to be located between the cytoplasmic membrane and the S-layer, based on the presence of a Tat signal sequence and the orientation of the active site that some of these enzymes have. The membrane fraction of the haloarchaeon Haloferax mediterranei (R-4), grown under anaerobic conditions in the presence of nitrate, was solubilized to identify the respiratory proteins associated or anchored to it. Using Triton X-100, CHAPS, and n-Octyl-β-d-glucopyranoside at different concentrations we found the best conditions for isolating membrane proteins in micelles, in which enzymatic activity and stability were maintained. Then, they were subjected to purification using two chromatographic steps followed by the analysis of the eluents by NANO-ESI Chip-HPLC-MS/MS. The results showed that the four main enzymes of denitrification (nitrate, nitrite, nitric oxide, and nitrous oxide reductases) in H. mediterranei were identified and they were co-purified thanks to the micelles made with Triton X-100 (20% w/v for membrane solubilisation and 0.2% w/v in the buffers used during purification). In addition, several accessory proteins involved in electron transfer processes during anaerobic respiration as well as proteins supporting ATP synthesis, redox balancing and oxygen sensing were detected. This is the first characterization of anaerobic membrane proteome of haloarchaea under denitrifying conditions using liquid chromatography-mass spectrometry. It provides new information for a better understanding of the anaerobic respiration in haloarchaea.


2020 ◽  
Vol 12 (10) ◽  
pp. 1719-1733 ◽  
Author(s):  
Flávia A Belato ◽  
Christopher J Coates ◽  
Kenneth M Halanych ◽  
Roy E Weber ◽  
Elisa M Costa-Paiva

Abstract Animals depend on the sequential oxidation of organic molecules to survive; thus, oxygen-carrying/transporting proteins play a fundamental role in aerobic metabolism. Globins are the most common and widespread group of respiratory proteins. They can be divided into three types: circulating intracellular, noncirculating intracellular, and extracellular, all of which have been reported in annelids. The diversity of oxygen transport proteins has been underestimated across metazoans. We probed 250 annelid transcriptomes in search of globin diversity in order to elucidate the evolutionary history of this gene family within this phylum. We report two new globin types in annelids, namely androglobins and cytoglobins. Although cytoglobins and myoglobins from vertebrates and from invertebrates are referred to by the same name, our data show they are not genuine orthologs. Our phylogenetic analyses show that extracellular globins from annelids are more closely related to extracellular globins from other metazoans than to the intracellular globins of annelids. Broadly, our findings indicate that multiple gene duplication and neo-functionalization events shaped the evolutionary history of the globin family.


Open Biology ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 190258
Author(s):  
K. C. T. Riciluca ◽  
A. C. Borges ◽  
J. F. R. Mello ◽  
U. C. de Oliveira ◽  
D. C. Serdan ◽  
...  

Haemocyanins (Hcs) are copper-containing, respiratory proteins that occur in the haemolymph of many arthropod species. Here, we report the presence of Hcs in the chilopode Myriapoda, demonstrating that these proteins are more widespread among the Arthropoda than previously thought. The analysis of transcriptome of S. subspinipes subpinipes reveals the presence of two distinct subunits of Hc, where the signal peptide is present, and six of prophenoloxidase (PPO), where the signal peptide is absent, in the 75 kDa range. Size exclusion chromatography profiles indicate different quaternary organization for Hc of both species, which was corroborated by TEM analysis: S. viridicornis Hc is a 6 × 6-mer and S. subspinipes Hc is a 3 × 6-mer, which resembles the half-structure of the 6 × 6-mer but also includes the presence of phenoloxidases, since the 1 × 6-mer quaternary organization is commonly associated with hexamers of PPO. Studies with Chelicerata showed that PPO activity are exclusively associated with the Hcs. This study indicates that Scolopendra may have different proteins playing oxygen transport (Hc) and PO function, both following the hexameric oligomerization observed in Hcs.


Author(s):  
Steven F. Perry ◽  
Markus Lambertz ◽  
Anke Schmitz

This chapter aims at piecing together the evolution of water breathing in invertebrates. Dedicated respiratory faculties, consisting of an external exchanger, an internal transport system (circulatory system or an equivalent), and some control element are first clearly recognizable among invertebrates in annelids, which excel in the number of different respiratory proteins they display. Molluscs and arthropods use primarily haemocyanin, each group showing evolutionary trends in respiratory proteins that have some bearing on the phylogenetic position. Each major group of molluscs has its own evolutionary story, but in general we see a reduction in the number of gills and often a release from bilateral symmetry. Among arthropods, crustaceans can develop gills on various parts of the legs and the body wall, each group showing a taxon-specific type. Arachnids and hexapods are primarily terrestrial, but several groups have independently and secondarily developed mechanisms for even long-term survival under water.


Author(s):  
Steven F. Perry ◽  
Markus Lambertz ◽  
Anke Schmitz

This chapter aims at piecing together the evolution of air breathing in invertebrates, the main conclusion here being that it evolved independently several times. In molluscs alone, air breathing has evolved several times, but almost exclusively among snails. Among crustaceans, several groups of crabs have also independently developed terrestrial representatives and transitional stages, particularly in the control of breathing, are evident. Analysis of insects shows few recognizable evolutionary progressions: air sacs and different stigmatal closure mechanisms have appeared and disappeared numerous times, even within closely related groups. But other tracheate groups such as myriapods show an interesting correlation between the presence of tracheal lungs, which end in an open circulatory system, and tracheae that invade the tissue as in insects, and the presence or reduction of respiratory proteins. In arachnids a similar tendency is seen, and the most interesting developments were the (partial) replacement of a ‘perfectly good’ air-breathing organ (book lungs) by another one (tracheae).


Author(s):  
Steven F. Perry ◽  
Markus Lambertz ◽  
Anke Schmitz

Respiratory proteins are complexes of proteins and metal ions. In haemoglobin the metal is iron, in haemocyanin—the most common invertebrate respiratory protein—it is copper. Globins such as haemoglobin and myoglobin and related molecular complexes have probably been around as long as life itself, whereas others such as the most common respiratory protein of molluscs and arthropods, haemocyanin, appear to be younger and are not chemically related to globins. Nevertheless, astounding functional similarities between haemoglobin and haemocyanin are seen. The present chapter takes a look at the molecular mechanisms behind their function, their fundamental integration in the respiratory process, and also traces the evolution of these respiratory proteins.


Sign in / Sign up

Export Citation Format

Share Document