scholarly journals Compound-specific Na+channel pore conformational changes induced by local anaesthetics

2005 ◽  
Vol 564 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Koji Fukuda ◽  
Tadashi Nakajima ◽  
Prakash C. Viswanathan ◽  
Jeffrey R. Balser
2005 ◽  
Vol 125 (5) ◽  
pp. 465-481 ◽  
Author(s):  
Ya-Chin Yang ◽  
Chung-Chin Kuo

The Na+ channel is the primary target of anticonvulsants carbamazepine, phenytoin, and lamotrigine. These drugs modify Na+ channel gating as they have much higher binding affinity to the inactivated state than to the resting state of the channel. It has been proposed that these drugs bind to the Na+ channel pore with a common diphenyl structural motif. Diclofenac is a widely prescribed anti-inflammatory agent that has a similar diphenyl motif in its structure. In this study, we found that diclofenac modifies Na+ channel gating in a way similar to the foregoing anticonvulsants. The dissociation constants of diclofenac binding to the resting, activated, and inactivated Na+ channels are ∼880 μM, ∼88 μM, and ∼7 μM, respectively. The changing affinity well depicts the gradual shaping of a use-dependent receptor along the gating process. Most interestingly, diclofenac does not show the pore-blocking effect of carbamazepine on the Na+ channel when the external solution contains 150 mM Na+, but is turned into an effective Na+ channel pore blocker if the extracellular solution contains no Na+. In contrast, internal Na+ has only negligible effect on the functional consequences of diclofenac binding. Diclofenac thus acts as an “opportunistic” pore blocker modulated by external but not internal Na+, indicating that the diclofenac binding site is located at the junction of a widened part and an acutely narrowed part of the ion conduction pathway, and faces the extracellular rather than the intracellular solution. The diclofenac binding site thus is most likely located at the external pore mouth, and undergoes delicate conformational changes modulated by external Na+ along the gating process of the Na+ channel.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sabrina Vullo ◽  
Nicolas Ambrosio ◽  
Jan P Kucera ◽  
Olivier Bignucolo ◽  
Stephan Kellenberger

Acid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by a drop in pH. Their established physiological and pathological roles, involving fear behaviors, learning, pain sensation and neurodegeneration after stroke, make them promising targets for future drugs. Currently, the ASIC activation mechanism is not understood. Here we used voltage-clamp fluorometry (VCF) combined with fluorophore-quencher pairing to determine the kinetics and direction of movements. We show that conformational changes with the speed of channel activation occur close to the gate and in more distant extracellular sites, where they may be driven by local protonation events. Further, we provide evidence for fast conformational changes in a pathway linking protonation sites to the channel pore, in which an extracellular interdomain loop interacts via aromatic residue interactions with the upper end of a transmembrane helix and would thereby open the gate.


2013 ◽  
Vol 104 (2) ◽  
pp. 137a
Author(s):  
Péter Lukács ◽  
René Cervenka ◽  
Vaibhavkumar Gawali ◽  
Xaver Koenig ◽  
Ágnes K. Mike ◽  
...  

2001 ◽  
Vol 118 (6) ◽  
pp. 679-692 ◽  
Author(s):  
Stephan Kellenberger ◽  
Muriel Auberson ◽  
Ivan Gautschi ◽  
Estelle Schneeberger ◽  
Laurent Schild

The epithelial Na+ channel (ENaC), located in the apical membrane of tight epithelia, allows vectorial Na+ absorption. The amiloride-sensitive ENaC is highly selective for Na+ and Li+ ions. There is growing evidence that the short stretch of amino acid residues (preM2) preceding the putative second transmembrane domain M2 forms the outer channel pore with the amiloride binding site and the narrow ion-selective region of the pore. We have shown previously that mutations of the αS589 residue in the preM2 segment change the ion selectivity, making the channel permeant to K+ ions. To understand the molecular basis of this important change in ionic selectivity, we have substituted αS589 with amino acids of different sizes and physicochemical properties. Here, we show that the molecular cutoff of the channel pore for inorganic and organic cations increases with the size of the amino acid residue at position α589, indicating that αS589 mutations enlarge the pore at the selectivity filter. Mutants with an increased permeability to large cations show a decrease in the ENaC unitary conductance of small cations such as Na+ and Li+. These findings demonstrate the critical role of the pore size at the αS589 residue for the selectivity properties of ENaC. Our data are consistent with the main chain carbonyl oxygens of the αS589 residues lining the channel pore at the selectivity filter with their side chain pointing away from the pore lumen. We propose that the αS589 side chain is oriented toward the subunit–subunit interface and that substitution of αS589 by larger residues increases the pore diameter by adding extra volume at the subunit–subunit interface.


2000 ◽  
Vol 116 (5) ◽  
pp. 653-662 ◽  
Author(s):  
Boon-Hooi Ong ◽  
Gordon F. Tomaselli ◽  
Jeffrey R. Balser

Voltage-gated sodium (Na+) channels are a fundamental target for modulating excitability in neuronal and muscle cells. When depolarized, Na+ channels may gradually enter long-lived, slow-inactivated conformational states, causing a cumulative loss of function. Although the structural motifs that underlie transient, depolarization-induced Na+ channel conformational states are increasingly recognized, the conformational changes responsible for more sustained forms of inactivation are unresolved. Recent studies have shown that slow inactivation components exhibiting a range of kinetic behavior (from tens of milliseconds to seconds) are modified by mutations in the outer pore P-segments. We examined the state-dependent accessibility of an engineered cysteine in the domain III, P-segment (F1236C; rat skeletal muscle) to methanethiosulfonate-ethylammonium (MTSEA) using whole-cell current recordings in HEK 293 cells. F1236C was reactive with MTSEA applied from outside, but not inside the cell, and modification was markedly increased by depolarization. Depolarized F1236C channels exhibited both intermediate (IM; τ ∼ 30 ms) and slower (IS; τ ∼ 2 s) kinetic components of slow inactivation. Trains of brief, 5-ms depolarizations, which did not induce slow inactivation, produced more rapid modification than did longer (100 ms or 6 s) pulse widths, suggesting both the IM and IS kinetic components inhibit depolarization-induced MTSEA accessibility of the cysteine side chain. Lidocaine inhibited the depolarization-dependent sulfhydryl modification induced by sustained (100 ms) depolarizations, but not by brief (5 ms) depolarizations. We conclude that competing forces influence the depolarization-dependent modification of the cysteine side chain: conformational changes associated with brief periods of depolarization enhance accessibility, whereas slow inactivation tends to inhibit the side chain accessibility. The findings suggest that slow Na+ channel inactivation and use-dependent lidocaine action are linked to a structural rearrangement in the outer pore.


1996 ◽  
Vol 199 (4) ◽  
pp. 941-948 ◽  
Author(s):  
J Spafford ◽  
N Grigoriev ◽  
A Spencer

The Na+ current of 'swimming motor neurones' in the hydromedusan Polyorchis penicillatus was tetrodotoxin-insensitive. The local anaesthetics lidocaine and procainamide caused partial, non use-dependent blockade of the Na+ channel. Veratridine produced partial blockade of the Na+ channel without affecting inactivation. An order of blocking potency of di- and trivalent cations was established as: La3+ = Zn2+ = Cd2+ > Ni2+ > Mn2+ = Co2+ > Ca2+ > Ba2+ > Mg2+. All these cations, except Ba2+, produced depolarizing shifts in the conductance-voltage curves. Even at relatively high concentrations, the dihydropyridines nicardipine, nitrendipine and (+)Bay K 8644 produced only weak blockade of the Na+ current; while nimodipine, nifedipine and (-)Bay K 8644 were ineffective. Diltiazem and verapamil weakly blocked the Na+ current in a dose-dependent manner with no evidence of use-dependence. The calmodulin inhibitors W7 and calmidazolium were ineffective blockers of Na+ currents. Crude Conus venoms and the Conus peptides, µ-conotoxin GIIA, µO-conotoxin MrVIA, omega-conotoxin GVIA and omega-conotoxin MVIIC, were without effect. Capsaicin produced rapid, reversable blockade of Na+ current. It has been suggested that 'primitive' Na+ channels could be expected to have pharmacological properties that are intermediate between those of Na+ and Ca2+ channels. If such channels exist, the Na+ channel described here is clearly not one of them.


FEBS Letters ◽  
2002 ◽  
Vol 511 (1-3) ◽  
pp. 159-164 ◽  
Author(s):  
Ronald A Li ◽  
Kazuki Sato ◽  
Kyoko Kodama ◽  
Toshiyuki Kohno ◽  
Tian Xue ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Mahesh Kondapuram ◽  
Benedikt Frieg ◽  
Sezin Yüksel ◽  
Tina Schwabe ◽  
Christian Sattler ◽  
...  

ABSTRACTHyperpolarization-activated and cyclic nucleotide (HCN) modulated channels are tetrameric cation channels. In each of the four subunits, the intracellular cyclic nucleotide-binding domain (CNBD) is coupled to the transmembrane domain via a helical structure, the C-linker. High-resolution channel structures suggest that the C-linker enables functionally relevant interactions with the opposite subunit, which might be critical for coupling the conformational changes in the CNBD to the channel pore. We combined mutagenesis, patch-clamp technique, confocal patch-clamp fluorometry, and molecular dynamics simulations to show that residue K464 of the C-linker is essential for stabilizing the closed state of the mHCN2 channel by forming interactions with the opposite subunit. MD simulations revealed that both cAMP and K464E induce a rotation of the intracellular domain relative to the channel pore, weakening the autoinhibitory effect of the unoccupied CL-CNBD region. The adopted poses are in excellent agreement with structural results.


Sign in / Sign up

Export Citation Format

Share Document