channel gate
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Angela F. Dulhunty ◽  
James A. Fraser ◽  
Christopher L.-H. Huang ◽  
Samantha C. Salvage

The P2328S mutation in mice is associated with arrhythmia and spontaneous diastolic calcium release in atrial and ventricular myocytes and there is a corresponding leftward shift in the Ca2+-activation curve for mutant RYR2 channels from homozygous mouse hearts (Salvage et al. 2019. J Cell Sci. https://doi.org/10.1242/jcs.229039). P2328 is located in helical domain 1 (HD1) of RYR2. Local structural changes likely result when structurally active proline residues are replaced by structurally inert serine residues. We speculate that local structural changes in HD1 lead to sequential intradomain and interdomain stearic changes through the protein to the distant channel gate, which favor the open pore conformation. The drug flecainide prevents arrhythmia in humans and mouse models of CPVT by blocking NaV1.5 and RYR2 channels. Conventionally, flecainide blocks RYR2 channels in a voltage-dependent manner. We did not observe voltage-dependent pore block. This was possibly because, in contrast to previous studies, the only channel modulators that we used to produce end-diastolic control channel activity were 1 µM cytoplasmic Ca2+ and 1 mM luminal Ca2+. We observed previously unreported, voltage-independent increases in WT and P2328S channel activity at low flecainide concentrations, followed by a decline in activity at higher concentrations. The increase in activity dominated the effect of flecainide on P2328S channels. These effects suggested high-affinity flecainide binding to an activation site and lower-affinity binding to an inhibition site, both distant from the channel pore (Salvage et al. 2021. Cells. https://doi.org/10.3390/cells10082101). Unlike channel block by flecainide, the drug under our conditions stabilized intrinsic sub-conductance activity at +40 mV and −40 mV. Since flecainide effectively reduces CPVT arrythmia clinically and in animal models, we conclude that voltage-independent inhibition and voltage-dependent channel block prevail under cellular conditions. However, channel activation is important to note as it may be unmasked in other circumstances such as acquired cardiac disorders, mutations, or additional drug applications.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sabrina Vullo ◽  
Nicolas Ambrosio ◽  
Jan P Kucera ◽  
Olivier Bignucolo ◽  
Stephan Kellenberger

Acid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by a drop in pH. Their established physiological and pathological roles, involving fear behaviors, learning, pain sensation and neurodegeneration after stroke, make them promising targets for future drugs. Currently, the ASIC activation mechanism is not understood. Here we used voltage-clamp fluorometry (VCF) combined with fluorophore-quencher pairing to determine the kinetics and direction of movements. We show that conformational changes with the speed of channel activation occur close to the gate and in more distant extracellular sites, where they may be driven by local protonation events. Further, we provide evidence for fast conformational changes in a pathway linking protonation sites to the channel pore, in which an extracellular interdomain loop interacts via aromatic residue interactions with the upper end of a transmembrane helix and would thereby open the gate.


Brain ◽  
2021 ◽  
Author(s):  
Yousra El Ghaleb ◽  
Pauline E Schneeberger ◽  
Monica L Fernández-Quintero ◽  
Stefanie M Geisler ◽  
Simone Pelizzari ◽  
...  

Abstract T-type calcium channels (Cav3.1 to Cav3.3) regulate low-threshold calcium spikes, burst firing and rhythmic oscillations of neurons and are involved in sensory processing, sleep, and hormone and neurotransmitter release. Here we examined four heterozygous missense variants in CACNA1I, encoding the Cav3.3 channel, in patients with variable neurodevelopmental phenotypes. The p.(Ile860Met) variant, affecting a residue in the putative channel gate at the cytoplasmic end of the IIS6 segment, was identified in three family members with variable cognitive impairment. The de novo p.(Ile860Asn) variant, changing the same amino acid residue, was detected in a patient with severe developmental delay and seizures. In two additional individuals with global developmental delay, hypotonia, and epilepsy the variants p.(Ile1306Thr) and p.(Met1425Ile), substituting residues at the cytoplasmic ends of IIIS5 and IIIS6, respectively, were found. Because structure modelling indicated that the amino acid substitutions differentially affect the mobility of the channel gate, we analyzed possible effects on CaV3.3 channel function using patch-clamp analysis in HEK293T cells. The mutations resulted in slowed kinetics of current activation, inactivation, and deactivation, and in hyperpolarizing shifts of the voltage-dependence of activation and inactivation, with CaV3.3-I860N showing the strongest and CaV3.3-I860M the weakest effect. Structure modelling suggests that by introducing stabilizing hydrogen bonds the mutations slow the kinetics of the channel gate and cause the gain-of-function effect in CaV3.3 channels. The gating defects left-shifted and increased the window currents, resulting in increased calcium influx during repetitive action potentials and even at resting membrane potentials. Thus, calcium toxicity in neurons expressing the CaV3.3 variants is one likely cause of the neurodevelopmental phenotype. Computer modelling of thalamic reticular nuclei neurons indicated that the altered gating properties of the CaV3.3 disease variants lower the threshold and increase the duration and frequency of action potential firing. Expressing the CaV3.3-I860N/M mutants in mouse chromaffin cells shifted the mode of firing from low-threshold spikes and rebound burst firing with wild-type CaV3.3 to slow oscillations with CaV3.3-I860N and an intermediate firing mode with CaV3.3-I860M, respectively. Such neuronal hyper-excitability could explain seizures in the patient with the p.(Ile860Asn) mutation. Thus, our study implicates CACNA1I gain-of-function mutations in neurodevelopmental disorders, with a phenotypic spectrum ranging from borderline intellectual functioning to a severe neurodevelopmental disorder with epilepsy.


2021 ◽  
Author(s):  
Sabrina Vullo ◽  
Nicolas Ambrosio ◽  
Jan P. Kucera ◽  
Olivier Bignucolo ◽  
Stephan Kellenberger

AbstractAcid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by a drop in pH. Their established physiological and pathological roles, involving fear behaviors, learning, pain sensation and neurodegeneration after stroke, make them promising targets for future drugs. Currently, the ASIC activation mechanism is not understood. Here we used voltage-clamp fluorometry (VCF) combined with fluorophore-quencher pairing to determine the kinetics and direction of movements. Molecular dynamics simulations were used to further evaluate VCF-predicted movements. We show that conformational changes with the speed of channel activation occur close to the gate and in more distant extracellular sites, where they may be driven by local protonation events. Further, we provide evidence for fast conformational changes in a pathway linking protonation sites to the channel pore, in which an extracellular interdomain loop interacts via aromatic residue interactions with the upper end of a transmembrane helix and would thereby open the gate.


2021 ◽  
Vol 121 ◽  
pp. 105397 ◽  
Author(s):  
Haoyan Liu ◽  
Yongliang Li ◽  
Xiaohong Cheng ◽  
Ying Zan ◽  
Yihong Lu ◽  
...  
Keyword(s):  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Georg Kuenze ◽  
Carlos G Vanoye ◽  
Reshma R Desai ◽  
Sneha Adusumilli ◽  
Kathryn R Brewer ◽  
...  

The function of the voltage-gated KCNQ1 potassium channel is regulated by co-assembly with KCNE auxiliary subunits. KCNQ1-KCNE1 channels generate the slow delayed rectifier current, IKs, which contributes to the repolarization phase of the cardiac action potential. A three amino acid motif (F57-T58-L59, FTL) in KCNE1 is essential for slow activation of KCNQ1-KCNE1 channels. However, how this motif interacts with KCNQ1 to control its function is unknown. Combining computational modeling with electrophysiological studies, we developed structural models of the KCNQ1-KCNE1 complex that suggest how KCNE1 controls KCNQ1 activation. The FTL motif binds at a cleft between the voltage-sensing and pore domains and appears to affect the channel gate by an allosteric mechanism. Comparison with the KCNQ1-KCNE3 channel structure suggests a common transmembrane-binding mode for different KCNEs and illuminates how specific differences in the interaction of their triplet motifs determine the profound differences in KCNQ1 functional modulation by KCNE1 versus KCNE3.


Sign in / Sign up

Export Citation Format

Share Document