scholarly journals NOS isoform-specific regulation of basal but not exercise-induced mitochondrial biogenesis in mouse skeletal muscle

2007 ◽  
Vol 585 (1) ◽  
pp. 253-262 ◽  
Author(s):  
G. D. Wadley ◽  
J. Choate ◽  
G. K. McConell
2010 ◽  
Vol 298 (3) ◽  
pp. C572-C579 ◽  
Author(s):  
Tuoyu Geng ◽  
Ping Li ◽  
Mitsuharu Okutsu ◽  
Xinhe Yin ◽  
Jyeyi Kwek ◽  
...  

Endurance exercise stimulates peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression in skeletal muscle, and forced expression of PGC-1α changes muscle metabolism and exercise capacity in mice. However, it is unclear if PGC-1α is indispensible for endurance exercise-induced metabolic and contractile adaptations in skeletal muscle. In this study, we showed that endurance exercise-induced expression of mitochondrial enzymes (cytochrome oxidase IV and cytochrome c) and increases of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31)-positive endothelial cells in skeletal muscle, but not IIb-to-IIa fiber-type transformation, were significantly attenuated in muscle-specific Pgc-1α knockout mice. Interestingly, voluntary running effectively restored the compromised mitochondrial integrity and superoxide dismutase 2 (SOD2) protein expression in skeletal muscle in Pgc-1α knockout mice. Thus, PGC-1α plays a functional role in endurance exercise-induced mitochondrial biogenesis and angiogenesis, but not IIb-to-IIa fiber-type transformation in mouse skeletal muscle, and the improvement of mitochondrial morphology and antioxidant defense in response to endurance exercise may occur independently of PGC-1α function. We conclude that PGC-1α is required for complete skeletal muscle adaptations induced by endurance exercise in mice.


2013 ◽  
Vol 441 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Shin-ichi Ikeda ◽  
Yoshifumi Tamura ◽  
Saori Kakehi ◽  
Kageumi Takeno ◽  
Minako Kawaguchi ◽  
...  

Author(s):  
David A. Hood ◽  
Beatrice Chabi ◽  
Keir Menzies ◽  
Michael O’Leary ◽  
Donald Walkinshaw

2007 ◽  
Vol 102 (1) ◽  
pp. 314-320 ◽  
Author(s):  
G. D. Wadley ◽  
G. K. McConell

The purpose of this study was to determine whether nitric oxide synthase (NOS) inhibition decreased basal and exercise-induced skeletal muscle mitochondrial biogenesis. Male Sprague-Dawley rats were assigned to one of four treatment groups: NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME, ingested for 2 days in drinking water, 1 mg/ml) followed by acute exercise, no l-NAME ingestion and acute exercise, rest plus l-NAME, and rest without l-NAME. The exercised rats ran on a treadmill for 53 ± 2 min and were then killed 4 h later. NOS inhibition significantly ( P < 0.05; main effect) decreased basal peroxisome proliferator-activated receptor-γ coactivator 1β (PGC-1β) mRNA levels and tended ( P = 0.08) to decrease mtTFA mRNA levels in the soleus, but not the extensor digitorum longus (EDL) muscle. This coincided with significantly reduced basal levels of cytochrome c oxidase (COX) I and COX IV mRNA, COX IV protein and COX enzyme activity following NOS inhibition in the soleus, but not the EDL muscle. NOS inhibition had no effect on citrate synthase or β-hydroxyacyl CoA dehydrogenase activity, or cytochrome c protein abundance in the soleus or EDL. NOS inhibition did not reduce the exercise-induced increase in peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) mRNA in the soleus or EDL. In conclusion, inhibition of NOS appears to decrease some aspects of the mitochondrial respiratory chain in the soleus under basal conditions, but does not attenuate exercise-induced mitochondrial biogenesis in the soleus or in the EDL.


PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41817 ◽  
Author(s):  
Glenn C. Rowe ◽  
Riyad El-Khoury ◽  
Ian S. Patten ◽  
Pierre Rustin ◽  
Zolt Arany

2016 ◽  
Vol 62 (Suppl.1) ◽  
pp. 148-148
Author(s):  
SHIN-ICHI IKEDA ◽  
YOSHIFUMI TAMURA ◽  
SAORI KAKEHI ◽  
RYUZO KAWAMORI ◽  
HIROTAKA WATADA

Sign in / Sign up

Export Citation Format

Share Document