scholarly journals The role of Synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction

2011 ◽  
Vol 589 (7) ◽  
pp. 1603-1618 ◽  
Author(s):  
Yun Liu ◽  
Yoshie Sugiura ◽  
Weichun Lin
1999 ◽  
Vol 82 (6) ◽  
pp. 3406-3416 ◽  
Author(s):  
Ping He ◽  
R. Chase Southard ◽  
Dong Chen ◽  
S. W. Whiteheart ◽  
R. L. Cooper

In this manuscript, we address the role of the soluble N-ethylmaleimide sensitive factor attachment protein (α-SNAP) in synaptic transmission at the neuromuscular junction of the crayfish opener muscle. Immunochemcial methods confirm the presence of α-SNAP in these preparations and show that it is concentrated in the synaptic areas. Microinjection and electrophysiological studies show that α-SNAP causes an increase in neurotransmitter release yet does not significantly affect the kinetics. More specific quantal analysis, using focal, macropatch, synaptic current recordings, shows that α-SNAP increases transmitter release by increasing the probability of exocytosis but not the number of potential release sites. These data demonstrate that the role of α-SNAP is to increase the efficiency of neurotransmission by increasing the probability that a stimulus will result in neurotransmitter release. What this suggests is that α-SNAP is critical for the formation and maintenance of a “ready release” pool of synaptic vesicles.


1998 ◽  
Vol 80 (6) ◽  
pp. 3233-3246 ◽  
Author(s):  
Shao-Ying Hua ◽  
Dorota A. Raciborska ◽  
William S. Trimble ◽  
Milton P. Charlton

Hua, Shao-Ying, Dorota A. Raciborska, William S. Trimble, and Milton P. Charlton. Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction. J. Neurophysiol. 80: 3233–3246, 1998. Although vesicle-associated membrane protein (VAMP/synaptobrevin) is essential for evoked neurotransmitter release, its role in spontaneous transmitter release remains uncertain. For instance, many studies show that tetanus toxin (TeNT), which cleaves VAMP, blocks evoked transmitter release but leaves some spontaneous transmitter release. We used recombinant tetanus and botulinum neurotoxin catalytic light chains (TeNT-LC, BoNT/B-LC, and BoNT/D-LC) to examine the role of VAMP in spontaneous transmitter release at neuromuscular junctions (nmj) of crayfish. Injection of TeNT-LC into presynaptic axons removed most of the VAMP immunoreactivity and blocked evoked transmitter release without affecting nerve action potentials or Ca2+ influx. The frequency of spontaneous transmitter release was little affected by the TeNT-LC when the evoked transmitter release had been blocked by >95%. The spontaneous transmitter release left after TeNT-LC treatment was insensitive to increases in intracellular Ca2+. BoNT/B-LC, which cleaves VAMP at the same site as TeNT-LC but uses a different binding site, also blocked evoked release but had minimal effect on spontaneous release. However, BoNT/D-LC, which cleaves VAMP at a different site from the other two toxins but binds to the same position on VAMP as TeNT, blocked both evoked and spontaneous transmitter release at similar rates. The data indicate that different VAMP complexes are employed for evoked and spontaneous transmitter release; the VAMP used in spontaneous release is not readily cleaved by TeNT or BoNT/B. Because the exocytosis that occurs after the action of TeNT cannot be increased by increased intracellular Ca2+, the final steps in neurotransmitter release are Ca2+ independent.


2006 ◽  
Vol 96 (3) ◽  
pp. 1053-1060 ◽  
Author(s):  
I. Parnas ◽  
G. Rashkovan ◽  
V. O'Connor ◽  
O. El-Far ◽  
H. Betz ◽  
...  

Peptides that inhibit the SNAP-stimulated ATPase activity of N-ethylmaleimide-sensitive fusion protein (NSF-2, NSF-3) were injected intra-axonally to study the role of this protein in the release of glutamate at the crayfish neuromuscular junction. Macropatch recording was used to establish the quantal content and to construct synaptic delay histograms. NSF-2 or NSF-3 injection reduced the quantal content, evoked by either direct depolarization of a single release bouton or by axonal action potentials, on average by 66 ± 12% (mean ± SD; n = 32), but had no effect on the time course of release. NSF-2 had no effect on the amplitude or shape of the presynaptic action potential nor on the excitatory nerve terminal current. Neither NSF-2 nor NSF-3 affected the shape or amplitude of single quantal currents. Injection of a peptide with the same composition as NSF-2, but with a scrambled amino acid sequence, failed to alter the quantal content. We conclude that, at the crayfish neuromuscular junction, NSF-dependent reactions regulate quantal content without contributing to the presynaptic mechanisms that control the time course of release.


2001 ◽  
Vol 12 (5) ◽  
pp. 1421-1430 ◽  
Author(s):  
Miki Tanaka ◽  
Jun Miyoshi ◽  
Hiroyoshi Ishizaki ◽  
Atsushi Togawa ◽  
Katsunori Ohnishi ◽  
...  

The Rab3 small G protein family consists of four members, Rab3A, -3B, -3C, and -3D. Of these members, Rab3A regulates Ca2+-dependent neurotransmitter release. These small G proteins are activated by Rab3 GDP/GTP exchange protein (Rab3 GEP). To determine the function of Rab3 GEP during neurotransmitter release, we have knocked out Rab3 GEP in mice. Rab3 GEP−/− mice developed normally but died immediately after birth. Embryos at E18.5 showed no evoked action potentials of the diaphragm and gastrocnemius muscles in response to electrical stimulation of the phrenic and sciatic nerves, respectively. In contrast, axonal conduction of the spinal cord and the phrenic nerve was not impaired. Total numbers of synaptic vesicles, especially those docked at the presynaptic plasma membrane, were reduced at the neuromuscular junction ∼10-fold compared with controls, whereas postsynaptic structures and functions appeared normal. Thus, Rab3 GEP is essential for neurotransmitter release and probably for formation and trafficking of the synaptic vesicles.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Eder Gambeta ◽  
Maria A. Gandini ◽  
Ivana A. Souza ◽  
Laurent Ferron ◽  
Gerald W. Zamponi

AbstractA novel missense mutation in the CACNA1A gene that encodes the pore forming α1 subunit of the CaV2.1 voltage-gated calcium channel was identified in a patient with trigeminal neuralgia. This mutation leads to a substitution of proline 2455 by histidine (P2455H) in the distal C-terminus region of the channel. Due to the well characterized role of this channel in neurotransmitter release, our aim was to characterize the biophysical properties of the P2455H variant in heterologously expressed CaV2.1 channels. Whole-cell patch clamp recordings of wild type and mutant CaV2.1 channels expressed in tsA-201 cells reveal that the mutation mediates a depolarizing shift in the voltage-dependence of activation and inactivation. Moreover, the P2455H mutant strongly reduced calcium-dependent inactivation of the channel that is consistent with an overall gain of function. Hence, the P2455H CaV2.1 missense mutation alters the gating properties of the channel, suggesting that associated changes in CaV2.1-dependent synaptic communication in the trigeminal system may contribute to the development of trigeminal neuralgia.


2013 ◽  
Vol 49 (3) ◽  
pp. 315-324 ◽  
Author(s):  
Hiroshi Nishimune ◽  
John A. Stanford ◽  
Yasuo Mori

Author(s):  
Marlaina R. Stocco ◽  
Ahmed A. El-Sherbeni ◽  
Bin Zhao ◽  
Maria Novalen ◽  
Rachel F. Tyndale

Abstract Rationale Cytochrome P450 2D (CYP2D) enzymes metabolize many addictive drugs, including methamphetamine. Variable CYP2D metabolism in the brain may alter CNS drug/metabolite concentrations, consequently affecting addiction liability and neuropsychiatric outcomes; components of these can be modeled by behavioral sensitization in rats. Methods To investigate the role of CYP2D in the brain in methamphetamine-induced behavioral sensitization, rats were pretreated centrally with a CYP2D irreversible inhibitor (or vehicle) 20 h prior to each of 7 daily methamphetamine (0.5 mg/kg subcutaneous) injections. In vivo brain microdialysis was used to assess brain drug and metabolite concentrations, and neurotransmitter release. Results CYP2D inhibitor (versus vehicle) pretreatment enhanced methamphetamine-induced stereotypy response sensitization. CYP2D inhibitor pretreatment increased brain methamphetamine concentrations and decreased the brain p-hydroxylation metabolic ratio. With microdialysis conducted on days 1 and 7, CYP2D inhibitor pretreatment exacerbated stereotypy sensitization and enhanced dopamine and serotonin release in the dorsal striatum. Day 1 brain methamphetamine and amphetamine concentrations correlated with dopamine and serotonin release, which in turn correlated with the stereotypy response slope across sessions (i.e., day 1 through day 7), used as a measure of sensitization. Conclusions CYP2D-mediated methamphetamine metabolism in the brain is sufficient to alter behavioral sensitization, brain drug concentrations, and striatal dopamine and serotonin release. Moreover, day 1 methamphetamine-induced neurotransmitter release may be an important predictor of subsequent behavioral sensitization. This suggests the novel contribution of CYP2D in the brain to methamphetamine-induced behavioral sensitization and suggests that the wide variation in human brain CYP2D6 may contribute to differential methamphetamine responses and chronic effects.


Sign in / Sign up

Export Citation Format

Share Document