scholarly journals Study Of The Influence Of Hypoxia On The Formation Of Erythrocytes From Induced Pluripotent Human Stem Cells

Author(s):  
А.Y Sekenova ◽  
V.Т Kumasheva ◽  
Sh.Е. Muhlis ◽  
V.B. Оgay

The production of erythrocytes from human hematopoietic stem cells (HSC) is considered one of the solutions to the deficiency of donor blood in transfusion medicine. The disadvantage of using HSC is the difficulty in multiplying in the required amount for use in transfusion. In this regard, pluripotent stem cells that can be multiplied in sufficient quantity may become a source of functional erythrocytes. The aim of this work was to study the effects of hypoxia on the formation of erythrocytes from human induced pluripotent stem cells (iPSCs) in ex vivo conditions. For the obtaining the erythroid bodies (EB), human iPSCs were cultured in induction medium containing human plasma and SCF, VEGF, BMP-4, TPO, EPO, interleukins IL-3 and IL-6 (20 days). EB treated with collagenase and cultured in a 96-well suspension culture plate under normoxia (21% O2) and hypoxia (2% O2) conditions in IMDM medium containing 20% ​​human plasma, SCF, IL-3, Epo, insulin and heparin. Erythroid maturation was evaluated by Giemsastaining and flow cytometry analysis ofCD235α. As a result of PSC differentiation, EBs with spherical morphology and sizes from 120 to 300 µm were obtained. Analysis for erythroid maturation showed that the number of mature erythrocytes with expression of CD235α after hypoxia averaged 56%, and after normoxia 19.3% of the total number of analyzed cells. The size of erythrocytes formed from iPSCs averaged 7 μm, which corresponds to the mature form of this type of cells. Thus, the obtained results of the study indicate that hypoxia plays a significant role in erythropoiesis, increasing the level of erythrocyte formation from human iPSCs.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohsen Ebrahimi ◽  
Mehdi Forouzesh ◽  
Setareh Raoufi ◽  
Mohammad Ramazii ◽  
Farhoodeh Ghaedrahmati ◽  
...  

AbstractDuring the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 651
Author(s):  
Ayako Oyane ◽  
Hiroko Araki ◽  
Maki Nakamura ◽  
Yasuhiko Aiki ◽  
Yuzuru Ito

Basic fibroblast growth factor (bFGF) is a crucial supplement for culture media of human pluripotent stem cells. However, bFGF is extremely unstable under cell culture conditions, which makes frequent (generally every day) medium refreshment requisite. We recently developed a water-floatable, bFGF-releasing membrane via a simple bFGF adsorption process following oxygen plasma treatment by utilizing a polyethylene nonwoven fabric as an adsorbent. This membrane allowed sustained release of bFGF while floating on medium, thereby keeping the bFGF concentration in the medium sufficient for maintaining human-induced pluripotent stem cells (iPSCs) in a proliferative and pluripotent state for as long as 3 days. In this study, lyophilization was applied to the membrane to stabilize bFGF. The sustained bFGF-releasing function of the membrane was kept unchanged even after lyophilization and subsequent cryopreservation at −30 °C for 3 months. The cryopreserved membrane supported proliferation and colony formation of human iPSCs while retaining their viability and pluripotency in a medium-change-free continuous culture for 3 days. The present bFGF-releasing membrane is ready-to-use, storable for at least 3 months, and obviates daily medium refreshment. Therefore, it is a new and more practical bFGF supplement for culture media of human stem cells.


2021 ◽  
Vol 22 (9) ◽  
pp. 4334
Author(s):  
Katrina Albert ◽  
Jonna Niskanen ◽  
Sara Kälvälä ◽  
Šárka Lehtonen

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Johanna Geuder ◽  
Lucas E. Wange ◽  
Aleksandar Janjic ◽  
Jessica Radmer ◽  
Philipp Janssen ◽  
...  

AbstractComparing the molecular and cellular properties among primates is crucial to better understand human evolution and biology. However, it is difficult or ethically impossible to collect matched tissues from many primates, especially during development. An alternative is to model different cell types and their development using induced pluripotent stem cells (iPSCs). These can be generated from many tissue sources, but non-invasive sampling would decisively broaden the spectrum of non-human primates that can be investigated. Here, we report the generation of primate iPSCs from urine samples. We first validate and optimize the procedure using human urine samples and show that suspension- Sendai Virus transduction of reprogramming factors into urinary cells efficiently generates integration-free iPSCs, which maintain their pluripotency under feeder-free culture conditions. We demonstrate that this method is also applicable to gorilla and orangutan urinary cells isolated from a non-sterile zoo floor. We characterize the urinary cells, iPSCs and derived neural progenitor cells using karyotyping, immunohistochemistry, differentiation assays and RNA-sequencing. We show that the urine-derived human iPSCs are indistinguishable from well characterized PBMC-derived human iPSCs and that the gorilla and orangutan iPSCs are well comparable to the human iPSCs. In summary, this study introduces a novel and efficient approach to non-invasively generate iPSCs from primate urine. This will extend the zoo of species available for a comparative approach to molecular and cellular phenotypes.


2021 ◽  
Vol 22 (3) ◽  
pp. 1161
Author(s):  
Esmeralda Alonso-Barroso ◽  
Belén Pérez ◽  
Lourdes Ruiz Desviat ◽  
Eva Richard

Propionic acidemia (PA), one of the most frequent life-threatening organic acidemias, is caused by mutations in either the PCCA or PCCB genes encoding both subunits of the mitochondrial propionyl-CoA carboxylase (PCC) enzyme. Cardiac alterations (hypertrophy, dilated cardiomyopathy, long QT) are one of the major causes of mortality in patients surviving the neonatal period. To overcome limitations of current cellular models of PA, we generated induced pluripotent stem cells (iPSCs) from a PA patient with defects in the PCCA gene, and successfully differentiated them into cardiomyocytes. PCCA iPSC-derived cardiomyocytes exhibited reduced oxygen consumption, an accumulation of residual bodies and lipid droplets, and increased ribosomal biogenesis. Furthermore, we found increased protein levels of HERP, GRP78, GRP75, SIG-1R and MFN2, suggesting endoplasmic reticulum stress and calcium perturbations in these cells. We also analyzed a series of heart-enriched miRNAs previously found deregulated in the heart tissue of a PA murine model and confirmed their altered expression. Our novel results show that PA iPSC-cardiomyocytes represent a promising model for investigating the pathological mechanisms underlying PA cardiomyopathies, also serving as an ex vivo platform for therapeutic evaluation.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1622
Author(s):  
Liang Xu ◽  
Hisatoshi Hanamatsu ◽  
Kentaro Homan ◽  
Tomohiro Onodera ◽  
Takuji Miyazaki ◽  
...  

Due to the limited intrinsic healing potential of cartilage, injury to this tissue may lead to osteoarthritis. Human induced pluripotent stem cells (iPSCs), which can be differentiated into chondrocytes, are a promising source of cells for cartilage regenerative therapy. Currently, however, the methods for evaluating chondrogenic differentiation of iPSCs are very limited; the main techniques are based on the detection of chondrogenic genes and histological analysis of the extracellular matrix. The cell surface is coated with glycocalyx, a layer of glycoconjugates including glycosphingolipids (GSLs) and glycoproteins. The glycans in glycoconjugates play important roles in biological events, and their expression and structure vary widely depending on cell types and conditions. In this study, we performed a quantitative GSL-glycan analysis of human iPSCs, iPSC-derived mesenchymal stem cell like cells (iPS-MSC like cells), iPS-MSC-derived chondrocytes (iPS-MSC-CDs), bone marrow-derived mesenchymal stem cells (BMSCs), and BMSC-derived chondrocytes (BMSC-CDs) using glycoblotting technology. We found that GSL-glycan profiles differed among cell types, and that the GSL-glycome underwent a characteristic alteration during the process of chondrogenic differentiation. Furthermore, we analyzed the GSL-glycome of normal human cartilage and found that it was quite similar to that of iPS-MSC-CDs. This is the first study to evaluate GSL-glycan structures on human iPS-derived cartilaginous particles under micromass culture conditions and those of normal human cartilage. Our results indicate that GSL-glycome analysis is useful for evaluating target cell differentiation and can thus support safe regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document