scholarly journals Differentiation of human induced pluripotent stem cells into erythroid cells

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohsen Ebrahimi ◽  
Mehdi Forouzesh ◽  
Setareh Raoufi ◽  
Mohammad Ramazii ◽  
Farhoodeh Ghaedrahmati ◽  
...  

AbstractDuring the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.

2021 ◽  
Vol 22 (9) ◽  
pp. 4334
Author(s):  
Katrina Albert ◽  
Jonna Niskanen ◽  
Sara Kälvälä ◽  
Šárka Lehtonen

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


2014 ◽  
Vol 26 (1) ◽  
pp. 210
Author(s):  
A. Gallegos-Cardenas ◽  
K. Wang ◽  
E. T. Jordan ◽  
R. West ◽  
F. D. West ◽  
...  

The generation of pig induced pluripotent stem cells (iPSC) opened the possibility to evaluate autologous neural cell therapy as a viable option for human patients. However, it is necessary to demonstrate whether pig iPSC are capable of in vitro neural differentiation similar to human iPSC in order to perform in vitro and in vivo comparative studies. Multiple laboratories have generated pig iPSC that have been characterised using pluripotent markers such as SSEA4 and POU5F1. However, correlations of pluripotent marker expression profiles among iPSC lines and their neural differentiation potential has not been fully explored. Because neural rosettes (NR) are composed of neural stem cells, our goal was to demonstrate that NR from pig iPSC can be generated, isolated, and expanded in vitro from multiple porcine iPSC lines similar to human iPSC and that the level of pluripotency in the starting porcine iPSC population (POUF51 and SSEA4 expression) could influence NRs development. Three lines of pig iPSC L1, L2, and L3 were cultured on matrigel-coated plates in mTeSR1 medium (Stemcell Technologies Inc., Vancouver, BC, Canada) and passaged every 3 to 4 days. For neural induction (NI), pig iPSC were disaggregated using dispase and plated. After 24 h, cells were maintained in N2 media [77% DMEM/F12, 10 ng mL–1 bovine fibroblast growth factor (bFGF), and 1X N2] for 15 days. To evaluate the differentiation potential to neuron and glial cells, NR were isolated, expanded in vitro and cultured for three weeks in AB2 medium (AB2, 1X ANS, and 2 mM L-Glutamine). Immunostaining assays were performed to determine pluripotent (POU5F1 and SSEA4), tight junction (ZO1), neural epithelial (Pax6 and Sox1), neuron (Tuj1), astrocyte (GFAP), and oligodendrocyte (O4) marker expression. Line L2 (POU5F1high and SSEA4low) showed a high potential to form NR (6.3.5%, P < 0.05) in comparison to the other 2 lines L1 (POU5F1low and SSEA4low) and L3 (POU5F1low and SSEA4high) upon NI. The NR immunocytochemistry results from Line L2 showed the presence of Pax6+ and Sox1– NRs cells at day 9 post-neural induction and that ZO1 started to localise at the apical border of NRs. At day 13, NRs cells were Pax6+ and Sox1+, and ZO1 was localised to the lumen of NR. After isolation and culture in vitro, NR cells expressed transcription factors PLAGL1, DACH1, and OTX2 through 2 passages, but were not detected in later passages. However, rosette cytoarchitecture was present up until passage 7 and were still Pax6+/Sox1+. NRs at passage 2 were cryopreserved and upon thaw showed normal NR morphology and were Pax6+/Sox1+. To characterise the plasticity of NRs, cells were differentiated. Tuj1 expression was predominant after differentiation indicating a bias towards a neuron phenotype. These results demonstrate that L2 pig iPSC (POUF51high and SSEA4low) have a high potential to form NR and neural differentiation parallels human iPSC neurulation events. Porcine iPSC should be considered as a large animal model for determining the safety and efficacy of human iPSC neural cell therapies.


Open Biology ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 180177 ◽  
Author(s):  
Yi-Ying Wu ◽  
Feng-Lan Chiu ◽  
Chan-Shien Yeh ◽  
Hung-Chih Kuo

Adult-onset neurodegenerative diseases are among the most difficult human health conditions to model for drug development. Most genetic or toxin-induced cell and animal models cannot faithfully recapitulate pathology in disease-relevant cells, making it excessively challenging to explore the potential mechanisms underlying sporadic disease. Patient-derived induced pluripotent stem cells (iPSCs) can be differentiated into disease-relevant neurons, providing an unparalleled platform for in vitro modelling and development of therapeutic strategies. Here, we review recent progress in generating Alzheimer's, Parkinson's and Huntington's disease models from patient-derived iPSCs. We also describe novel discoveries of pathological mechanisms and drug evaluations that have used these patient iPSC-derived neuronal models. Additionally, current human iPSC technology allows researchers to model diseases with 3D brain organoids, which are more representative of tissue architecture than traditional neuronal cultures. We discuss remaining challenges and emerging opportunities for the use of three-dimensional brain organoids in modelling brain development and neurodegeneration.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dezhi Lu ◽  
Yang Liu ◽  
Wentao Li ◽  
Hongshi Ma ◽  
Tao Li ◽  
...  

Three-dimensional (3D) bioprinting is a revolutionary technology that replicates 3D functional living tissue scaffolds in vitro by controlling the layer-by-layer deposition of biomaterials and enables highly precise positioning of cells. With the development of this technology, more advanced research on the mechanisms of tissue morphogenesis, clinical drug screening, and organ regeneration may be pursued. Because of their self-renewal characteristics and multidirectional differentiation potential, induced pluripotent stem cells (iPSCs) have outstanding advantages in stem cell research and applications. In this review, we discuss the advantages of different bioinks containing human iPSCs that are fabricated by using 3D bioprinting. In particular, we focus on the ability of these bioinks to support iPSCs and promote their proliferation and differentiation. In addition, we summarize the applications of 3D bioprinting with iPSC-containing bioinks and put forward new views on the current research status.


RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25462-25470 ◽  
Author(s):  
Xixi Dong ◽  
Haiyan Li ◽  
Lingling E ◽  
Junkai Cao ◽  
Bin Guo

Bioceramics akermanite enhanced vascularization and osteogenic differentiation of human iPSCs in 3D scaffolds in vitro and vivo.


2019 ◽  
Author(s):  
Pranav Machiraju ◽  
Joshua Huang ◽  
Fatima Iqbal ◽  
Yiping Liu ◽  
Xuemei Wang ◽  
...  

SUMMARYCurrent protocols for the differentiation of cardiomyocytes from human induced pluripotent stem cells (iPSCs) generally require prolonged time in culture and result in heterogeneous cellular populations. We present a method for the generation of beating cardiomyocytes expressing specific ventricular markers after just 14 days. Addition of the pan-retinoic acid receptor inverse agonist BMS 493 to human iPSCs for the first 8 days of differentiation resulted in increased protein expression of the ventricular isoform of myosin regulatory light chain (MLC2V) from 18.7% ± 1.72% to 55.8% ± 11.4% (p <0.0001) in cells co-expressing the cardiac muscle protein troponin T (TNNT2). Increased MLC2V expression was also accompanied by a slower beating rate (49.4 ± 1.53 vs. 93.0 ± 2.81 beats per minute, p <0.0001) and increased contraction amplitude (201% ± 8.33% vs. 100% ± 10.85%, p <0.0001) compared to untreated cells. Improved directed differentiation will improve in vitro cardiac modeling.


Author(s):  
А.Y Sekenova ◽  
V.Т Kumasheva ◽  
Sh.Е. Muhlis ◽  
V.B. Оgay

The production of erythrocytes from human hematopoietic stem cells (HSC) is considered one of the solutions to the deficiency of donor blood in transfusion medicine. The disadvantage of using HSC is the difficulty in multiplying in the required amount for use in transfusion. In this regard, pluripotent stem cells that can be multiplied in sufficient quantity may become a source of functional erythrocytes. The aim of this work was to study the effects of hypoxia on the formation of erythrocytes from human induced pluripotent stem cells (iPSCs) in ex vivo conditions. For the obtaining the erythroid bodies (EB), human iPSCs were cultured in induction medium containing human plasma and SCF, VEGF, BMP-4, TPO, EPO, interleukins IL-3 and IL-6 (20 days). EB treated with collagenase and cultured in a 96-well suspension culture plate under normoxia (21% O2) and hypoxia (2% O2) conditions in IMDM medium containing 20% ​​human plasma, SCF, IL-3, Epo, insulin and heparin. Erythroid maturation was evaluated by Giemsastaining and flow cytometry analysis ofCD235α. As a result of PSC differentiation, EBs with spherical morphology and sizes from 120 to 300 µm were obtained. Analysis for erythroid maturation showed that the number of mature erythrocytes with expression of CD235α after hypoxia averaged 56%, and after normoxia 19.3% of the total number of analyzed cells. The size of erythrocytes formed from iPSCs averaged 7 μm, which corresponds to the mature form of this type of cells. Thus, the obtained results of the study indicate that hypoxia plays a significant role in erythropoiesis, increasing the level of erythrocyte formation from human iPSCs.


2021 ◽  
pp. 1

Background and objectives: Despite the advances made in the prevention and treatment of cardiovascular diseases (CVD) in the last decade, they are still the leading cause of death in males at the rate of 50% worldwide. Considering the protective role of estrogen to decrease CVD rates in young females, it was suggested that using hormone therapy can be considered to improve heart regeneration. Using in vitro induced pluripotent stem cells (iPSCs) has become one of the most significant tools in CVD treatment in both genders. We design a novel optimal protocol for the differentiation of iPSCs to cardiomyocytes which may be valuable for CVD treatment in men. Methods: Human iPSCs were initially cultivated on mouse embryonic fibroblasts and then, transferred to a specific culture medium for differentiation process. In vitro differentiation of iPSCs into cardiomyocytes was induced at three phases on RPMI-1640 medium including CHIR99021 (5 µM) on days 0–3, BMP4 (20 ng/mL), and bFGF (100 ng/mL) on days 3–5, 10 µM of XAV939 on 6–8, and phytoestrogen + ascorbic acid on days 8–13. Scanning electron microscopy and Real-time PCR using specific primers were applied to confirm produced cardiomyocytes. Results: We found that the simultaneous use of small chemical molecules such as CHIR99021 and XAV 939, growth factors, such as BMP4, bFGF, and herbal-derived phytoestrogen from red clover could efficiently differentiate hiPSCs from the mesoderm and cardiomyocytes after 13 days. Using phytoestrogen increased the induction of cardiac markers including cTnT and GATA-4 in a shorter time; consequently, the proposed formulation has the potential to be used in developing a novel approach for cardiac repair or regeneration. Conclusion: Presented data indicated that the serial use of XAV939 and phytoestrogen at different times and stages can successfully induce cardiogenesis from hiPSCs. Thus, the proposed approach can be used for improved translational strategies for cardiac regeneration with fewer side effects.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4746-4746
Author(s):  
Friedrich Schuening ◽  
Michail Zaboikin ◽  
Tatiana Zaboikina ◽  
Narasimhachar Srinivasakumar

Abstract Abstract 4746 Induced pluripotent stem cells (iPSCs), due to their self-renewal and differentiation capability, have tremendous potential in regenerative medicine. Differentiation of IPSCs in vitro to obtain sufficient number of hematopoietic stem cells (HSCs) and their progenitors (HPCs) from iPSCs for therapeutic purposes is a holy grail of cellular therapy. To this end, we are comparing different in vitro differentiation approaches for generation of HSCs/HPCs from IPSCs. We have generated iPSCs from human adult dermal fibroblasts using two different reprogramming methods: 1) Transduction with retroviral vectors encoding human Klf4, Oct3/4, Sox2 and cMyc or 2) Electroporation with Epstein–Barr virus (EBV) based episomal plasmid vectors encoding Klf4, Oct3/4, Sox2, L-Myc and p53 targeting shRNA. The transduced/electroporated cells were reprogrammed on SNL5 mouse feeder cells. Putative iPSC-like colonies were cloned and adapted to grow under feeder-free conditions on Matrigel (BD) in mTeSR1 (Stem Cell Technologies) medium. From over 30 individual clones isolated, six were further characterized for: 1) expression of pluripotency markers (Tra-1–60, SSEA-3, SSEA-4, Nanog and Oct3/4) by immunofluorescence; 2) endogenous and total mRNA expression by quantitative real-time reverse-transcriptase PCR (RT-qPCR) for Klf4, Oct3/4, Sox2 and cMyc to distinguish between cellular and vector derived expression of reprogramming factors; 3) RT-qPCR to determine expression of other markers of pluripotency such as Nanog and DNA methyl transferease; 4) karyotype analysis to determine chromosomal anomalies. The vector-free IPSC clones were also tested for residual integrated EBV plasmid DNA by qPCR. Trilineage differentiation ability of the clones was determined through embryoid body formation in suspension cultures, and subsequent staining of resulting embryoid bodies after adherence to gelatin coated dishes for makers of ectoderm, mesoderm and endoderm. HSCs/HPCs were obtained from IPSCs by 1) coculture with OP9 stromal cells, or 2) step-wise differentiation in feeder-free conditions on Matrigel under defined conditions in the presence of appropriate growth factors [Niwa A et al. PLoS One. (2011); 6(7):e22261.]. The resultant HSCs/HPCs were subjected to colony forming assays in semi-solid medium containing hematopoietic cytokines. Both erythroid and myelomonocytic colonies could be readily identified. The influence of ambient oxygen concentration on the HSC/HPC derivation procedure is being investigated. The results of these studies will be presented. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document