Energy Management of a Hybrid-Electric Aeronautical Propulsion System to Be Used in a Stationary Test Bench

2021 ◽  
Author(s):  
Manuel A. Rend\xe3\xb3N ◽  
Konstantinos Kyprianidis ◽  
Yipsy Roque Benito ◽  
Daniel De A. Fernandes ◽  
Ariele T. Ferraz ◽  
...  
2020 ◽  
Vol 64 (02) ◽  
pp. 171-184
Author(s):  
Nengqi Xiao ◽  
Xiang Xu ◽  
Baojia Chen

This article introduces the composition and 12 operating conditions of a four-engine two-propeller hybrid power system. Through the combination of gearbox clutch and disconnection, the propulsion system has four single-engine operation modes, two double-engine parallel operation modes, and six PTI operation modes. Because the propulsion system has a variety of operating conditions, each operating condition has a form of energy transfer. As a result, its energy management and control are more complicated. To study the energy management and control strategy of a diesel- electric hybrid propulsion system, this work mainly studies the simulation model and sub-models of a diesel-electric hybrid propulsion system. In this study, MATLAB/ SIMULINK software is used to build the diesel engine model, motor model, and ship engine system mathematical model. The test and analysis were carried out on the test bench of the diesel-electric hybrid power system. By comparing the theoretical value of the SIMULINK simulation model with the test value of the test bench system, the correctness of each sub-model modeling method is verified. On the one hand, research on the text lays a theoretical foundation for the subsequent implementation of the conventional energy management and control strategy based on state identification on the unified management and distribution of the diesel-electric hybrid power system. At the same time, energy management of the diesel-electric hybrid system is also carried out. Optimization research provides theoretical guidance.


2019 ◽  
Vol 92 (5) ◽  
pp. 727-736
Author(s):  
Leonardo Machado ◽  
Jay Matlock ◽  
Afzal Suleman

Purpose This paper aims to experimentally evaluate the performance of a parallel hybrid propulsion system for use in small unmanned aerial vehicles (UAVs). Design/methodology/approach The objective is to combine all the individual components of the hybrid electric propulsion system (HEPS) into a modular test bench to characterize the performance of a parallel hybrid propulsion system, and to evaluate a rule-based controller based on the ideal operating line concept for the control of the power plant. Electric motor (EM) designed to supplement the power of the internal combustion engine (ICE) to reduce the overall fuel consumption, with the supervisory controller optimizing ICE torque. Findings The EM was able to supplement the power of the ICE to reduce fuel consumption, and proved the capability of acting as a generator to recharge the batteries drawing from ICE power. Furthermore, the controller showed that it is possible to reduce the fuel consumption with a HEPS when compared to its gasoline counterpart by running simulated representative UAV missions. The findings also highlighted the challenges to build and integrate the HEPS in small UAVs. Originality/value The modularity of the test bench allows each component to be changed to assess its impact on the performance of the system. This allows for further exploration and improvements of the HEPS in a controlled environment.


Author(s):  
Manuel A. Rendon ◽  
Konstantinos Kyprianidis ◽  
Yipsy Roque Benito ◽  
Daniel de A. Fernandes ◽  
Ariele T. Ferraz ◽  
...  

Abstract Environmental requirements have led the air transportation industry to work towards reducing greenhouse gas emissions and mechanical noise levels. Nowadays, this sector contributes with 2% of the total greenhouse gas emissions, and there is a demand from global aviation regulators for further reducing this percentage. In the last years, the development of Hybrid-Electric Propulsion Systems (HEPSs) has grown. The HEPS combines an Internal Combustion Engine (ICE), for example, Gas Turbine (GT) or reciprocating engine, with an Electric Motor (EM), combining the inherent advantages of both. HEPSs present increased efficiency and operating safety in comparison with conventional ICE-powered systems. Furthermore, they can supply the electrical devices with power. This area of study is multidisciplinary in nature and, therefore, poses research challenges on ICEs, EMs, electronic converters, propeller design, monitoring and control systems, management and supervision systems, energy efficiency and optimization, aerodynamics and aircraft mechanical design. A research project aimed at the characterisation of hybrid-electric aircraft propulsion systems, and the construction of a HEPS prototype, is underway in Brazil. The system is essentially composed of a GT, an EM, three electronic converters, a battery bank and a propeller. It can operate with three different topologies: series, full-electric and turbo-electric. A test bench with all the necessary peripheral and analysis infrastructure is under construction. Present work aims to: (i) develop simplified models for all the test bench components, (ii) given a mission profile, show the results of an initial energy management computing code that determines the optimal hybridization strategy, and (iii) simulate various operating alternatives for the chosen mission profile. The results (i) highlight the impact of critical characteristics of the batteries on the HEPS performance, and (ii) demonstrate the application of the management code on optimizing the aircraft energy consumption for a given mission profile.


2019 ◽  
Vol 55 (3) ◽  
pp. 3066-3075 ◽  
Author(s):  
Victor Isaac Herrera ◽  
Aitor Milo ◽  
Haizea Gaztanaga ◽  
Amaia Gonzalez-Garrido ◽  
Haritza Camblong ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Sign in / Sign up

Export Citation Format

Share Document