Heat Transfer in a Radially Rotating Four-Pass Serpentine Channel With Staggered Half-V Rib Turbulators

2000 ◽  
Vol 123 (1) ◽  
pp. 39-50 ◽  
Author(s):  
G. J. Hwang ◽  
S. C. Tzeng ◽  
C. P. Mao ◽  
C. Y. Soong

The present work is concerned with experimental investigation of the convective heat transfer in a radially rotating four-pass serpentine channel. Two types of staggered half-V rib turbulators are considered to examine their effects on heat transfer enhancement. The coolant air is pressurized and pre-cooled to compensate for the low rotating rate and low temperature or density difference in key parameters of thermal and flow characteristics. The geometric dimensions are fixed, whereas the ranges of the thermal and flow parameters in the present measurements are 20,000⩽Re⩽40,000,0⩽Ro⩽0.21, and Gr/Re2∼O10−2. The present results disclose the effects of the pressurized flow, rib arrangement, channel rotation, and centrifugal buoyancy on the local heat transfer in each passage of the channel. Finally, the present data are fitted on correlation equations for evaluation of local heat transfer in the rotating four-pass ribbed channel configurations considered.

1997 ◽  
Vol 119 (3) ◽  
pp. 617-623 ◽  
Author(s):  
Jenn-Jiang Hwang ◽  
Tong-Miin Liou

The effect of slit ribs on heat transfer and friction in a rectangular channel is investigated experimentally. The slit ribs are arranged in-line on two opposite walls of the channel. Three rib open-area ratios (β = 24, 37, and 46 percent), three rib pitch-to-height ratios (Pi/H = 10, 20, and 30), and two rib height-to-channel hydraulic diameter ratios (H/De = 0.081, and 0.162) are examined. The Reynolds number ranges from 10,000 to 50,000. Laser holographic interferometry is employed to measure the local heat transfer coefficients of the ribbed wall quantitatively, and observe the flow over the ribbed wall qualitatively. The results show that the slit rib has an advantage of avoiding “hot spots.” In addition, the heat transfer performance of the slit-ribbed channel is much better than that of the solid-ribbed channel. Semi-empirical correlations for friction and heat transfer are developed to account for rib spacings and open-area ratios. These correlations may be used in the design of turbine blade cooling passages.


Author(s):  
Jenn-Jiang Hwang ◽  
Tong-Miin Liou

The effect of slit ribs on heat transfer and friction in a rectangular channel is investigated experimentally. The slit ribs are arranged in-line on two opposite walls of the channel. Three rib open-area ratios (β=24%, 37%, and 46%), three rib pitch-to-height ratios (Pi/H=10, 20, and 30), and two rib height-to-channel hydraulic diameter ratios (H/De=0.081, and 0.162) are examined. The Reynolds number ranges from 10000 to 50000. Laser holographic interferometry is employed to quantitatively measure the local heat transfer coefficients of the ribbed wall, and qualitatively observe the flow over the ribbed wall. The results show that the slit rib has an advantage of avoiding “hot-spots”. In addition, the heat transfer performance of the slit-ribbed channel is much better than that of the solid-ribbed channel. Semi-empirical correlations for friction and heat transfer are developed to account for rib spacings and open-area ratios. These correlations may be used in the design of turbine blade cooling passages.


Author(s):  
Sin Chien Siw ◽  
Minking K. Chyu ◽  
Mary Anne Alvin

This paper described a detailed experimental study to explore an internal cooling passage that mimic a “zig-zag” pattern. There are four passages connected by 110° turning angle in a periodic fashion, hence the name. Experiments are performed in a scaled-up test channel with a cross-section of 63.5mm by 25.4mm, corresponding to the aspect ratio of 2.5:1. Compared to the conventional straight internal cooling passages, the zig-zag channel with several turns will generate additional secondary vortices while providing longer flow path that allows coolant to remove much more heat load prior to discharge into the hot mainstream. Surface features, (1) dimples, and (2) protrusions are added to the zig-zag channel to further enhance the heat transfer, while contributed to larger wetted area. The experiment utilizes the well-established transient liquid crystal technique to determine the local heat transfer coefficient distribution of the entire zig-zag channel. Protrusions exhibit higher heat transfer enhancement than that of dimples. However, both designs proved to be inferior compared to the rib-turbulators. Pressure loss in these test channels is approximately twofold higher than that of straight smooth test channel due to the presence of turns; but the pressure loss is lower than the zig-zag channel with rib-turbulators. The result revealed that one advantage of having either protrusions or dimples as these surface elements will resulted in gradual and more uniform increment of heat transfer throughout the entire channel compared to previous test cases.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Andallib Tariq ◽  
Naveen Sharma ◽  
Manish Mishra

This work is an experimental study of detailed aerothermal characteristics inside a duct carrying an array of solid and permeable pentagonal ribs with a parallel and inclined slit, mounted on the bottom wall. The rib height-to-hydraulic diameter ratio, the rib pitch-to-height ratio, and the open area ratio fixed during experiments are 0.125%, 12%, and 25%, respectively. The heat transfer coefficient (HTC) distribution is mapped by using transient liquid crystal thermography (LCT), while the detailed flow measurements are performed by using particle image velocimetry (PIV). The primary focus of the study is to assess the influence of inter-rib region flow characteristics on the local heat transfer fields. The heat transfer and friction factor measurements are evaluated along with thermohydraulic performances at different Reynolds numbers, i.e., 26,160, 42,500, and 58,850. Performance indexes show that the pentagonal ribs with the inclined-slit are superior to other configurations from both perspective. Aerothermal features within inter-rib region were elucidated by analyzing the time-averaged streamlines, mean velocities, fluctuation statistics, vorticity, turbulent kinetic energy (TKE) budget terms, and local and spanwise-averaged Nusselt number as well as augmentation Nusselt numbers. Critical flow structures and coherent structures were identified, which illustrate about different flow dynamic processes. The flow emanating out of the inclined-slit pentagonal rib significantly affects the magnitude of streamwise velocity, fluctuation statistics, vorticity, and TKE budget terms at the downstream corner, whereas the dissipation term of TKE budget correlates well with the surface heat transfer distribution.


Author(s):  
J.-J. Hwang ◽  
C.-S. Cheng ◽  
Y.-P. Tsia

An experimental study has been performed to measure local heat transfer coefficients and static well pressure drops in leading-edge triangular ducts cooled by wall/impinged jets. Coolant provided by an array of equally spaced wall jets is aimed at the leading-edge apex and exits from the radial outlet. Detailed heat transfer coefficients are measured for the two walls forming the apex using transient liquid crystal technique. Secondary-flow structures are visualized to realize the mechanism of heat transfer enhancement by wall/impinged jets. Three right-triangular ducts of the same altitude and different apex angles of β = 30 deg (Duct A), 45 deg (Duct B) and 60 deg (Duct C) are tested for various jet Reynolds numbers (3000≦Rej≦12600) and jet spacings (s/d = 3.0 and 6.0). Results show that an increase in Rej increases the heat transfer on both walls. Local heat transfer on both walls gradually decreases downstream due to the crossflow effect. At the same Rej, the Duct C has the highest wall-averaged heat transfer because of the highest jet center velocity as well as the smallest jet inclined angle. Moreover, the distribution of static pressure drop based on the local through flow rate in the present triangular duct is similar to that that of developing straight pipe flows. Average jet Nusselt numbers on the both walls have been correlated with jet Reynolds number for three different duct shapes.


2020 ◽  
Vol 12 (9) ◽  
pp. 168781402094234
Author(s):  
Adnan ◽  
Syed Zulfiqar Ali Zaidi ◽  
Umar Khan ◽  
Naveed Ahmed ◽  
Syed Tauseef Mohyud-Din ◽  
...  

The purpose of this work is to investigate the heat transport on water suspended by aluminium alloy nanomaterials. The analysis is conducted by incorporating the influence of imposed magnetic field and viscous dissipation over convective surface. The self-similar version of the model is treated numerically and the results for the flow field are presented. It is perceived that the velocity of AA7072-H2O and AA7075-H2O declines for stronger magnetic field effects. Due to convective condition, the temperature rises abruptly. Moreover, increasing trends in the local heat transfer rate are examined for higher Biot effects.


Author(s):  
Ken-Ichiro Takeishi ◽  
Robert Krewinkel ◽  
Yutaka Oda ◽  
Yuichi Ichikawa

In the near future, when designing and using Double Wall Airfoils, which will be manufactured by 3D printers, the positional relationship between the impingement cooling nozzle and the heat transfer enhancement ribs on the target plate naturally becomes more accurate. Taking these circumstances into account, an experimental study was conducted to enhance the heat transfer of the wall jet region of a round impingement jet cooling system. This was done by installing circular ribs or vortex generators (VGs) in the impingement cooling wall jet region. The local heat transfer coefficient was measured using the naphthalene sublimation method, which utilizes the analogy between heat and mass transfer. As a result, it was clarified that, within the ranges of geometries and Reynolds numbers at which the experiments were conducted, it is possible to improve the averaged Nusselt number Nu up to 21% for circular ribs and up to 51% for VGs.


2002 ◽  
Vol 68 (669) ◽  
pp. 1523-1530
Author(s):  
Masafumi HIROTA ◽  
Hiroshi NAKAYAMA ◽  
Lei CAI ◽  
Hideomi FUJITA ◽  
Tatsuhito KATOH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document