Influence of Imperfections in Working Media on Diesel Engine Indicator Process

2000 ◽  
Vol 123 (1) ◽  
pp. 231-239 ◽  
Author(s):  
S. N. Danov ◽  
A. K. Gupta

Several improvements to the mathematical model for the indicator process in a diesel engine cylinder are proposed. The thermodynamic behavior of working media is described by the equation of state valid for real gases. Analytical mathematical dependencies between thermal parameters (pressure, temperature, volume) and caloric parameters (internal energy, enthalpy, specific heat capacities) have been obtained. These equations have been applied to the various products encountered during the burning of fuel and the gas mixture as a whole in the engine cylinder under conditions of high pressures. An improved mathematical model, based on the first law of thermodynamics, has been developed by taking into account imperfections in the working media that appear under high pressures. The numerical solution of the simultaneous differential equations is obtained by Runge–Kutta-type method. The mathematical model is then used to solve the desired practical problems in two different two-stroke turbo-charged engines: 8DKRN 74/160 and Sulzer-RLB66. Significant differences between the values calculated using ideal gas behavior and the real gas at high-pressure conditions have been found. The numerical experiments show that if the pressure is above 8 to 9 MPa, the imperfections in working medium must be taken into consideration. The results obtained from the mathematical dependencies of the caloric parameters can also be used to model energy conversion and combustion processes in other thermal machines such as advanced gas turbine engines with high-pressure ratios.

Author(s):  
Stanislav N. Danov ◽  
Ashwani K. Gupta

Abstract In the companion Part 1 of this two-part series paper several improvements to the mathematical model of the energy conversion processes, taking place in a diesel engine cylinder, have been proposed. Analytical mathematical dependencies between thermal parameters (pressure, temperature, volume) and caloric parameters (internal energy, enthalpy, specific heat capacities) have been obtained. These equations have been used to provide an improved mathematical model of diesel engine indicator process. The model is based on the first law of thermodynamics, by taking into account imperfections in the working media which appear when working under high pressures and temperatures. The numerical solution of the simultaneous differential equations is obtained by Runge-Kutta type method. The results show that there are significant differences between the values calculated by equations for ideal gas and real gas under conditions of high pressures and temperatures. These equations are then used to solve the desired practical problem in two different two-stroke turbo-charged engines (8DKRN 74/160 and Sulzer-RLB66). The numerical experiments show that if the pressure is above 8 to 9 MPa, the working medium imperfections must be taken into consideration. The mathematical model presented here can also be used to model combustion process of other thermal engines, such as advanced gas turbine engines and rockets.


Author(s):  
Stanislav N. Danov ◽  
Ashwani K. Gupta

Abstract Several improvements to the mathematical model of the indicator process, taking place in a diesel engine cylinder, are proposed. The thermodynamic behavior of working media is described by the equation of state, valid for real gases. Analytical mathematical dependencies between thermal parameters (pressure, temperature, volume) and caloric parameters (internal energy, enthalpy, specific heat capacities) have been obtained. These equations have been applied to the various products encountered during the burning of fuel and the gas mixture as a whole in the engine cylinder under conditions of high pressures and temperatures. An improved mathematical model, based on the first law of thermodynamics, has been developed by taking into account imperfections in the working media that appear under high pressures and temperatures. The numerical results show that there are significant differences between the values calculated using ideal gas behavior and the real gas, in particular at high pressure and high temperature conditions. The numerical experiments show that if the pressure is above 8 to 9 MPa, the imperfections in working medium must be taken into consideration. The results obtained from the mathematical dependency of the caloric parameters can also be used to model any energy conversion and combustion process, such as, advanced gas turbine engines which operate at high pressure ratios, rockets.


Author(s):  
Stanislav N. Danov

Abstract Several improvements to the mathematical model of the indicator process taking place at a diesel engine cylinder are proposed. The thermodynamic behavior of working medium is described by the equation of state, valid for real gases. Mathematical dependencies between thermal parameters (P, T, v) and caloric parameters (u, h, cv, cp) have been obtained. An improved mathematical model, based on the first law of thermodynamics, has been developed, taking into account working medium imperfections. The numerical solution of the simultaneous differential equations is made by a method of Runge-Kutta type. The computing procedure is iterative. Calculations in respect to the caloric parameters (u, h, cv and cp) for various gases under pressure up to 25 MPa and temperature up to 3000°C have been carried out. The results show, that there are significant differences between the values, calculated by equations for ideal gases, and the proposed equations for real gases under high pressure and temperature. Actual applied problems for two-stroke turbocharged engines Sulzer-RLB66 and 8DKRN 74/160 have been solved. The comparison between the experimental data and numerical results show very good agreement. The numerical experiments show that if the pressure is above 8–9 MPa, the working medium imperfections must be taken into consideration.


Author(s):  
Данилов ◽  
Igor Danilov ◽  
Марусин ◽  
Aleksandr Marusin ◽  
Марусин ◽  
...  

According to the mathematical model in the form of non-linear differential equations investigated the influence of compressibility factors and dynamic viscosity of diesel fuel by changing the pressure in the fuel system of a diesel engine with output.


Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


2013 ◽  
Vol 572 ◽  
pp. 551-554
Author(s):  
Wen Zhong Tang ◽  
Cheng Wei Fei ◽  
Guang Chen Bai

For the probabilistic design of high-pressure turbine (HPT) blade-tip radial running clearance (BTRRC), a distributed collaborative response surface method (DCRSM) was proposed, and the mathematical model of DCRSM was established. From the BTRRC probabilistic design based on DCRSM, the static clearance δ=1.865 mm is demonstrated to be optimal for the BTRRC design considering aeroengine reliability and efficiency. Meanwhile, DCRSM is proved to be of high accuracy and efficiency in the BTRRC probabilistic design. The present study offers an effective way for HPT BTRRC dynamic probabilistic design and provides also a promising method for the further probabilistic optimal design of complex mechanical system.


2014 ◽  
Vol 621 ◽  
pp. 311-316
Author(s):  
Tian Yang Zhao ◽  
Dan Jiang ◽  
Song Yu ◽  
Jie Wang ◽  
Ping Yang

Based on the continuity equation and the motion equation of fluid dynamics, a mathematical model of high pressure transients in water hydraulic pipeline is presented. In the model, the friction item is consist of steady friction item and dynamic friction item, using the Darcy-Weisbach equation to solve steady viscous friction item and using four exponential terms instead of weighting function to solve dynamic friction item. By finite difference method accompanied with Matlab/Simulink, an example of high pressure turbulent flow in water hydraulic pipeline is configured so as to simulate the dynamic characteristics of pressure transients. The comparison between the observed result and the simulation result shows the mathematical model of high pressure transients in water hydraulic pipeline with turbulent flow is reasonable.


1983 ◽  
Vol 37 (6) ◽  
pp. 508-512 ◽  
Author(s):  
Haruhiko Kataoka ◽  
Shiro Maeda ◽  
Chiaki Hirose ◽  
Koichi Kajiyama

N2 coherent anti-Stokes Raman spectroscopy (CARS) thermometry over a pressure range 1 to 50 atm has been studied. The CARS profile at high pressure and high temperature was recorded by using the ignition inside a running engine cylinder. The observed Q-branch profile was theoretically fitted by incorporating the collisional narrowing effect, serving for the temperature determination at various pressures. Because of the narrowing effect, the apparent band width showed little change with pressure above 5 atm in general. It has been suggested that the band width at 1/5 of the maximum height can be a useful measure of temperature, while the usual half-width turns out to be hardly practicable at high pressures.


2021 ◽  
Author(s):  
Marcin Zacharewicz ◽  
Tomasz Kniaziewicz

The paper presents the results of model and empirical tests conducted for a marine diesel engine fueled by a blend of n-butanol and diesel oil. The research were aimed at assessing the usefulness of the proprietary diesel engine model in conducting research on marine engines powered by alternative fuels to fossil fuels. The authors defined the measures of adequacy. On their basis, they assessed the adequacy of the mathematical model used. The analysis of the results of the conducted research showed that the developed mathematical model is sufficiently adequate. Therefore, both the mathematical model and the computer program based on it will be used in further work on supplying marine engines with mixtures of diesel oil and biocomponents.


2018 ◽  
Vol 245 ◽  
pp. 09014 ◽  
Author(s):  
Nikita Zhurkin ◽  
Anatolij Donskoj ◽  
Aleksandr Zharkovskij

Pneumatic driven high pressure pumps (PDHPPs), having a number of considerable advantages in comparison to other types of high pressure pumps, are widely used in different sectors of modern industry. However, estimating the performance characteristics of a PDHPP is complicated due to the specifics of physical processes taking place during its operation. A mathematical model was developed to solve this problem. Two main operating modes are considered: for constant load and for constant volume, which cover the most common uses of the PDHPPs. The solution of the model made it possible to estimate how various parameters affect the operation of the pump. Thus, with an increasing pressure of compressed air, the volume flow grows at the pump outlet; with a higher pressure of the pumped liquid due to compressibility and a higher load on the drive cylinder, the flow, on the contrary, reduces. In case the PDHPP operates for the constant volume, the time of pressure increase grows with an increase of the required pressure and the value of this volume. The mathematical model and computational data can be used in the development of new and modification of the existing pumps.


Sign in / Sign up

Export Citation Format

Share Document