Autofrettage of Open-End Tubes—Pressures, Stresses, Strains, and Code Comparisons

2000 ◽  
Vol 123 (3) ◽  
pp. 271-281 ◽  
Author(s):  
Anthony P. Parker

Autofrettage is used to introduce advantageous residual stresses into pressure vessels. The Bauschinger effect can produce less compressive residual hoop stresses near the bore than are predicted by “ideal” autofrettage solutions. A recently developed numerical analysis procedure is adopted and extended. The ratio of calculated autofrettage pressure (numerical)/ideal autofrettage pressure (Tresca criterion and plane stress) is calculated and verified against available solutions. The case of open-end conditions based upon von Mises and engineering plane strain (constant axial strain with zero net axial force) is examined in detail. The ratio in this case varies between unity and 2/3, but exhibits very significant variations from the plane stress case when the diameter ratio of the tube exceeds 1.8. Results are within 0.5 percent of available analytical, numerical, and experimental results. A simple numerical fit allows all autofrettage pressures to be replicated to within 0.5 percent. The true plane strain pressure ratio is examined and shown to be inappropriate in modeling engineering plane strain. A number of residual hoop and axial stress profiles is presented for radius ratio 2.0. Calculated pressures are used to determine residual hoop stress values for tube diameter ratios from 1.1 to 3.0 for the full range of percentage overstrain levels. These comparisons indicate that Bauschinger effect is evident when the ratio autofrettage radius/bore radius exceeds 1.2, irrespective of diameter ratio. To assist designers the important values of residual hoop stress at the bore are summarized in a composite plot and a numerical fit is provided. The accuracy of the current ASME code using pressure criteria is assessed. The code is shown to be generally and modestly conservative. A design procedure is proposed which appears capable of extending code validity beyond 40 percent overstrain (the limit of the current code) and of eliminating the small nonconservatism at very low overstrain. Hoop strain values are calculated at both the bore and outside diameter of a tube of radius ratio 2 at the peak of the autofrettage cycle using von Mises criterion with open-end, closed-end, and plane strain conditions. These are compared with available solutions; general agreement is demonstrated, with agreement within 2 percent with an accepted simple formula in the case of open ends. ASME code predictions of percentage overstrain based upon strains at the peak of the autofrettage cycle are generally within 6 percent of numerical predictions. This is in turn produces an agreement within approximately 3 percent in residual bore hoop stress calculation. This discrepancy is generally conservative, becoming non-conservative only at overstrain levels exceeding 80 percent. Strain during removal of autofrettage pressure, in the presence of Bauschinger effect, is also calculated. This shows that the difference in strain during the unloading phase is up to 8 percent (ID) and 6.3 percent (OD) compared with the predictions of elastic unloading. These latter results show similar agreement with the ASME code as in the peak-strain analysis and permit correction of estimates of percentage overstrain based upon permanent bore enlargement.

Author(s):  
Peihua Jing ◽  
Tariq Khraishi ◽  
Larissa Gorbatikh

In this work, closed-form analytical solutions for the plasticity zone shape at the lip of a semi-infinite crack are developed. The material is assumed isotropic with a linear elastic-perfectly plastic constitution. The solutions have been developed for the cases of plane stress and plane strain. The three crack modes, mode I, II and III have been considered. Finally, prediction of the plasticity zone extent has been performed for both the Von Mises and Tresca yield criterion. Significant differences have been found between the plane stress and plane strain conditions, as well as between the three crack modes’ solutions. Also, significant differences have been found when compared to classical plasticity zone calculations using the Irwin approach.


Author(s):  
Anthony P. Parker

A recent formulation due to Huang and Cui provides an analytic method for calculating residual stresses in autofrettaged tubes exhibiting non-linear behavior (including Bauschinger effect) during manufacture. The formulation incorporates Von Mises criterion but is limited in its application to plane strain end conditions and an incompressible material (i.e. Poisson’s ratio 0.5) with a fixed unloading behavior. Comparisons indicate that, by selecting unloading behavior typical of that at the bore, the method produces reliable results for both A723 type steels and for steels which exhibit significant strain hardening and/or more dramatic Bauschinger effect. Numerical comparisons show that open-end, compressible conditions produce results which differ from the plane strain, incompressible case, but that these differences may be accurately corrected using a straightforward, pragmatic process. It is concluded that a simple modification of the Huang & Cui procedure may be used to perform extremely accurate straightforward spreadsheet calculations of residual stress in autofrettaged tubes manufactured from a wide range of steels under various end conditions. The Huang & Cui formulation also provides a reliable and highly accurate means for validating numerical formulations including Finite Element methods.


1968 ◽  
Vol 90 (3) ◽  
pp. 403-408 ◽  
Author(s):  
S. T. Rolfe ◽  
R. P. Haak ◽  
J. H. Gross

During fabrication, the cold forming of structural components may reduce the yield strength of a component if it is loaded in a direction opposite to that of the cold forming. This reduction in yield strength, referred to as the Bauschinger effect, is influenced by the state-of-stress under which the cold forming is performed, by the criterion used to determine the yield strength, and by the use of post-forming stress relief. To establish the importance and magnitude of these effects, specimens from 2 1/2-in-thick plates of HY-80 steel, cold-formed by plane strain bending, were tested along with specimens that were cold-formed by plane-stress axial straining. For material tested in a direction opposite to that of cold forming, the Bauschinger effect was observed both in tension and compression, whereas for material tested at 90 deg to the direction of cold forming in plane strain, both the tensile and compressive yield strengths increased and no Bauschinger effect was observed. Because of the difference in restraint, the Bauschinger effect was greater for plane-stress axial deformation than for plane-strain bending deformation. The Bauschinger effect was greater when the yield strength was determined at small offsets and was essentially eliminated at an offset greater than 0.5 percent. In addition, the Bauschinger effect was greatest for small amounts of cold deformation and was progressively decreased by strain hardening at large amounts of cold deformation. The reduction in secant modulus and in yield strength (Bauschinger effect) in cold-formed material was essentially eliminated by stress-relief treatment at 1025 deg. F. The results indicate the importance of knowing the cold-forming state-of-stress, the criterion used in determining yield strength, and the effects of stress relief when assessing the effects of cold deformation on mechanical properties.


Author(s):  
Gustavo Henrique B. Donato ◽  
Felipe Cavalheiro Moreira

Fracture toughness and Fatigue Crack Growth (FCG) experimental data represent the basis for accurate designs and integrity assessments of components containing crack-like defects. Considering ductile and high toughness structural materials, crack growing curves (e.g. J-R curves) and FCG data (in terms of da/dN vs. ΔK or ΔJ) assumed paramount relevance since characterize, respectively, ductile fracture and cyclic crack growth conditions. In common, these two types of mechanical properties severely depend on real-time and precise crack size estimations during laboratory testing. Optical, electric potential drop or (most commonly) elastic unloading compliance (C) techniques can be employed. In the latter method, crack size estimation derives from C using a dimensionless parameter (μ) which incorporates specimen’s thickness (B), elasticity (E) and compliance itself. Plane stress and plane strain solutions for μ are available in several standards regarding C(T), SE(B) and M(T) specimens, among others. Current challenges include: i) real specimens are in neither plane stress nor plane strain - modulus vary between E (plane stress) and E/(1-ν2) (plane strain), revealing effects of thickness and 3-D configurations; ii) furthermore, side-grooves affect specimen’s stiffness, leading to an “effective thickness”. Previous results from current authors revealed deviations larger than 10% in crack size estimations following existing practices, especially for shallow cracks and side-grooved samples. In addition, compliance solutions for the emerging clamped SE(T) specimens are not yet standardized. As a step in this direction, this work investigates 3-D, thickness and side-groove effects on compliance solutions applicable to C(T), SE(B) and clamped SE(T) specimens. Refined 3-D elastic FE-models provide Load-CMOD evolutions. The analysis matrix includes crack depths between a/W=0.1 and a/W=0.7 and varying thicknesses (W/B = 4, W/B = 2 and W/B = 1). Side-grooves of 5%, 10% and 20% are also considered. The results include compliance solutions incorporating all aforementioned effects to provide accurate crack size estimation during laboratory fracture and FCG testing. All proposals revealed reduced deviations if compared to existing solutions.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Jiaqi Chen ◽  
Hao Wang ◽  
Milad Salemi ◽  
Perumalsamy N. Balaguru

Carbon fiber reinforced polymer (CFRP) matrix composite overwrap repair systems have been introduced and accepted as an alternative repair system for steel pipeline. This paper aimed to evaluate the mechanical behavior of damaged steel pipeline with CFRP repair using finite element (FE) analysis. Two different repair strategies, namely wrap repair and patch repair, were considered. The mechanical responses of pipeline with the composite repair system under the maximum allowable operating pressure (MAOP) was analyzed using the validated FE models. The design parameters of the CFRP repair system were analyzed, including patch/wrap size and thickness, defect size, interface bonding, and the material properties of the infill material. The results show that both the stress in the pipe wall and CFRP could be reduced by using a thicker CFRP. With the increase in patch size in the hoop direction, the maximum von Mises stress in the pipe wall generally decreased as the maximum hoop stress in the CFRP increased. The reinforcement of the CFRP repair system could be enhanced by using infill material with a higher elastic modulus. The CFRP patch tended to cause higher interface shear stress than CFRP wrap, but the shear stress could be reduced by using a thicker CFRP. Compared with the fully bonded condition, the frictional interface causes a decrease in hoop stress in the CFRP but an increase in von Mises stress in the steel. The study results indicate the feasibility of composite repair for damaged steel pipeline.


Sign in / Sign up

Export Citation Format

Share Document