Efficient Tubesheet Design Using Repeated Elastic Limit Analysis Technique

2000 ◽  
Vol 123 (2) ◽  
pp. 197-202 ◽  
Author(s):  
W. D. Reinhardt ◽  
S. P. Mangalaramanan

Conventional analysis of tubesheets in nuclear steam generators involves elastic analysis of a solid plate with equivalent properties. It has recently been recognized that alternate design techniques such as inelastic finite element analysis would lead to substantial cost reductions in material and manufacturing. Due to the anisotropy, arriving at yield criteria for an equivalent solid tubesheet is more complicated than for an isotropic solid. In addition, applying plastic finite element analysis in design is significantly more complex and time-consuming than elastic analysis. This paper proposes a relatively simple method to perform tubesheet collapse analysis. An anisotropic yield criterion is applied in conjunction with the classical lower-bound theorem of limit analysis and repeated elastic analyses involving elastic modulus modification. Two yield criteria are examined, namely Hill’s yield criterion and a recently suggested compressible fourth-order yield function. The collapse load predictions of the lower-bound equivalent solid methods are compared with the elastic-plastic finite element collapse load of the equivalent solid and of the actual perforated tubesheet.

Author(s):  
Warren Brown

In previous papers, practical limits on the maximum applied load for standard ASME B16.5 and B16.47 carbon steel, weld neck pipe flanges were examined. A new code equation for the tangential (hoop) stress at the small end of the hub for a weld neck flange was developed to facilitate calculation of the limits using elastic analysis. The results were verified against elastic-plastic Finite Element Analysis (FEA). In this paper, the work is extended to include other flange configurations, including loose ring flanges, slip-on flanges and flat plate flanges. This paper is a continuation of the papers presented during PVP 2006 and PVP 2007 (Brown [1, 2]) and it extends the scope of the proposed methodology for determining flange stress limits in determining the maximum allowable bolt load for any given flange size and configuration.


2012 ◽  
Vol 6 (2) ◽  
pp. 147-153 ◽  
Author(s):  
Daisuke Kono ◽  
◽  
Sascha Weikert ◽  
Atsushi Matsubara ◽  
Kazuo Yamazaki ◽  
...  

Dynamic motion errors of machine tools consist of errors in the mechanical system and the servo system. In this study, a simple method to estimate the dynamic mechanical error is proposed to evaluate machine tool structures. The dynamic mechanical error in the low frequency range is estimated from the static deformation due to the driving force, the counter force, and the inertial force. The error in a high-precision machine tool is estimated for comparison with measurements. Two calculation tools, finite element analysis and rigid multi-body simulation, are used for the estimation. Measured dynamic mechanical errors can be correctly estimated by the proposed method using finite element analysis. The tilt of driven bodies is the major reason for dynamic mechanical errors. When the reduction factor representing the structural deformation is properly determined, the rigid multi-body simulation is also an effective tool. Use of the proposed method for modification planning is demonstrated. Stiffness enhancement of the saddle was an effective modification candidate to reduce the dynamic mechanical error. If the error should be reduced to sub-micrometer level, the location of components should be modified because the Abbe offset and the offset of the driving force from the inertial force must be shortened.


Author(s):  
J.H. Li ◽  
M.J. Cassidy ◽  
Y. Tian ◽  
J. Huang ◽  
A.V. Lyamin ◽  
...  

Author(s):  
Sathya Prasad Mangalaramanan

Abstract Statically admissible stress distributions are necessary to evaluate lower bound limit loads. Over the last three decades, several methods have been postulated to obtain these distributions using iterative elastic finite element analyses. Some of the pioneering techniques are the reduced modulus, r-node, elastic compensation, and linear matching methods, to mention a few. A new method, called the Bounded Elastic Moduli Multiplier Technique (BEMMT), is proposed and the theoretical underpinnings thereof are explained in this paper. BEMMT demonstrates greater robustness, more generality, and better stress distributions, consistently leading to lower-bound limit loads that are closer to elastoplastic finite element analysis estimates. BEMMT also questions the validity of the prevailing power law based stationary stress distributions. An accompanying research offers several case studies to validate this claim.


Author(s):  
D Mackenzie ◽  
J T Boyle ◽  
J Spence

Stress classification is a significant problem in pressure vessel design by analysis, especially if the design is based on solid finite element analysis. Stress categorization may be circumvented if the design is based on elastic-plastic or limit analysis but the degree of difficulty commonly associated with these types of analysis makes this approach unattractive to many designers. In this paper, a brief survey of a number of recent developments in pressure vessel design by analysis is discussed and assessed in light of Code design requirements.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Y. Li ◽  
S. Frimpong ◽  
W. Y. Liu

A simulator for analyzing the interaction between the oil sand terrain and a pipe wagon articulating (PWA) system has been developed in this paper. An elastic-plastic oil sand model was built based on the finite element analysis (FEA) method and von Mises yield criterion using the Algor mechanical event simulation (MES) software. The three-dimensional (3D) distribution of the stress, strain, nodal displacement, and deformed shape of the oil sands was animated at an environmental temperature of 25°C. The 3D behavior of the oil sand terrain was investigated with different loading conditions. The effect of the load and contact area on the stress and nodal displacement was analyzed, respectively. The results indicate that both the max stress and max nodal displacement increase with the load varying from 0 to N and decrease with the contact area varying from 2 to 10 m2. The method presented in this paper forms the basis for evaluating the bearing capacity of oil sand ground.


Sign in / Sign up

Export Citation Format

Share Document