Structural Health Monitoring With Piezoelectric Active Sensors

2000 ◽  
Vol 123 (2) ◽  
pp. 353-358 ◽  
Author(s):  
H. A. Winston ◽  
F. Sun ◽  
B. S. Annigeri

A technology for non-intrusive real-time structural health monitoring using piezoelectric active sensors is presented. The approach is based on monitoring variations of the coupled electromechanical impedance of piezoelectric patches bonded to metallic structures in high-frequency bands. In each of these applications, a single piezoelectric element is used as both an actuator and a sensor. The resulting electromechanical coupling makes the frequency-dependent electric impedance spectrum of the PZT sensor a good mapping of the underlying structure’s acoustic signature. Moreover, incipient structural damage can be indicated by deviations of this signature from its original baseline pattern. Unique features of this technology include its high sensitivity to structural damage, non-intrusiveness to the host structure, and low cost of implementation. These features have potential for enabling on-board damage monitoring of critical or inaccessible aerospace structures and components, such as aircraft wing joints, and both internal and external jet engine components. Several exploratory applications will be discussed.

Author(s):  
Howard A. Winston ◽  
Fanping Sun ◽  
Balkrishna S. Annigeri

A technology for non-intrusive real-time structural health monitoring using piezoelectric active sensors is presented. The approach is based on monitoring variations of the coupled electromechanical impedance of piezoelectric patches bonded to metallic structures in high-frequency bands. In each of these applications, a single piezoelectric element is used as both an actuator and a sensor. The resulting electromechanical coupling makes the frequency-dependent electric impedance spectrum of the PZT sensor a good mapping of the underlying structure’s acoustic signature. Moreover, incipient structural damage can be indicated by deviations of this signature from its original baseline pattern. Unique features of this technology include its high sensitivity to structural damage, non-intrusiveness to the host structure, and low cost of implementation. These features have potential for enabling on-board damage monitoring of critical or inaccessible aerospace structures and components, such as aircraft wing joints, and both internal and external jet engine components. Several exploratory applications will be discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yabin Liang ◽  
Yixuan Chen ◽  
Zuocai Zhang ◽  
Qian Feng

Electromechanical impedance (Electromechanical impedance)-based methods as potential nondestructive evaluation (NDT) techniques have been widely used in the field of structural health monitoring (SHM), especially for the civil, mechanical, and aerospace engineering fields. However, it is still difficult to apply in practical applications due to the limitations of the impedance measurement hardware, which is usually expensive, bulky, and heavy. In this paper, a small, lightweight, and low power consumption EMI-based structural health monitoring system combined with the low-cost miniature impedance board AD5933 was studied experimentally to investigate its quantifiable performance in impedance measurement and structural damage identification. At first, a simple impedance test with a free PZT patch was introduced to present the impedance calibration and measurement procedure of AD5933, and then its calibration performance was validated by comparing the signature with the one measured by a professional impedance analyzer (WK6500B). In order to further validate the feasibility and effectiveness of the AD5933 board in practical applications, a threaded pipe connection specimen was assembled in the laboratory and then connected with the AD5933 to acquire its impedance signatures under different loosening severities. The final results demonstrated that the impedance measured by the AD5933 show a good consistency with the measurements by the WK6500B, and the evaluation board could be successfully utilized for the loosening severities identification and quantitatively evaluation.


2021 ◽  
pp. 136943322110384
Author(s):  
Xingyu Fan ◽  
Jun Li ◽  
Hong Hao

Vibration based structural health monitoring methods are usually dependent on the first several orders of modal information, such as natural frequencies, mode shapes and the related derived features. These information are usually in a low frequency range. These global vibration characteristics may not be sufficiently sensitive to minor structural damage. The alternative non-destructive testing method using piezoelectric transducers, called as electromechanical impedance (EMI) technique, has been developed for more than two decades. Numerous studies on the EMI based structural health monitoring have been carried out based on representing impedance signatures in frequency domain by statistical indicators, which can be used for damage detection. On the other hand, damage quantification and localization remain a great challenge for EMI based methods. Physics-based EMI methods have been developed for quantifying the structural damage, by using the impedance responses and an accurate numerical model. This article provides a comprehensive review of the exciting researches and sorts out these approaches into two categories: data-driven based and physics-based EMI techniques. The merits and limitations of these methods are discussed. In addition, practical issues and research gaps for EMI based structural health monitoring methods are summarized.


Author(s):  
David Siler ◽  
Ben Cooper ◽  
Chris White ◽  
Stephen Marinsek ◽  
Andrei Zagrai ◽  
...  

The paper presents the design, development, and assembly of Structural Health Monitoring (SHM) experiments intended to be launch in space on a sub-orbital rocket flight as well as a high altitude balloon flight. The experiments designed investigate the use of both piezoelectric sensing hardware in a wave propagation experiment and piezoelectric wafer active sensors (PWAS) in an electromechanical impedance experiment as active elements of spacecraft SHM systems. The list of PWAS experiments includes a bolted-joint test and an experiment to monitor PWAS condition during spaceflight. Electromechanical impedances of piezoelectric sensors will be recorded in-flight at varying input frequencies using an onboard data acquisition system. The wave propagation experiment will utilize the sensing hardware of the Metis Design MD7 Digital SHM system. The payload will employ a triggering system that will begin experiment data acquisition upon sufficient saturation of g-loading. The experiment designs must be able to withstand the harsh environment of space, intense vibrations from the rocket launch, and large shock loading upon re-entry. The paper discusses issues encountered during design, development, and assembly of the payload and aspects central to successful demonstration of the SHM system during both the sub-orbital space flight and balloon launch.


2011 ◽  
Vol 230-232 ◽  
pp. 587-591
Author(s):  
Yu Xiang Zhang ◽  
Dong Dong Wen ◽  
Hua Cheng Li ◽  
Fu Hou Xu

Electromechanical impedance technique which based on smart material is a new method for structural damage detection, and it could be widely applied in structural health monitoring field. However, a very expensive and bulky analyzer is being used to measure the impedance, which is not practical for on-line system. Therefore, this paper developed a device that can measure the electric impedance using small modular electric components and reasonable circuit. Experiments are carried out to test the aluminum beam crack. Results indicate that the device can measure the electric impedance and detect the damage effectively. The proposed method provides a solution to miniaturize the impedance-measuring equipment and reduce the cost of measurement.


2013 ◽  
Vol 477-478 ◽  
pp. 813-816
Author(s):  
Milán Magdics ◽  
Ruben Jesus Garcia ◽  
Voravika Wattanasoontorn ◽  
Mateu Sbert

Regular health monitoring of bridges is a vital process to prevent serious structural damage. Marker-based systems, which follow the trajectory of objects by placing a well-characterized pattern on their surface and identify them on photos or videos taken of these objects, have proven to be a cheap and flexible alternative for such tasks. In this work, we extend our previous laboratory implementation with a low-cost, fully automatic on-site installation at the bridge at Arosa Island, Galicia, Spain. Preliminary results presented in this paper show that our system is highly robust for the harsh climate of the installation site.


2017 ◽  
Vol 17 (3) ◽  
pp. 654-667 ◽  
Author(s):  
Leandro M Campeiro ◽  
Ricardo ZM da Silveira ◽  
Fabricio G Baptista

The electro-mechanical impedance technique has been extensively studied in recent decades as a non-destructive method for detecting structural damage in structural health monitoring applications using low-cost piezoelectric transducers. Although many studies have reported the effectiveness of this detection method, numerous practical problems, such as the effects of noise and vibration, need to be addressed to enable this method’s effective use in real applications. Therefore, this article presents an experimental analysis of noise and vibration effects on structural damage detection in impedance-based structural health monitoring systems. The experiments were performed on an aluminum bar using two piezoelectric diaphragms, where one diaphragm was used to measure the electrical impedance signatures and the other diaphragm was used as an actuator to generate noise and controlled vibration. The effects of noise and vibration on impedance signatures were evaluated by computing the coherence function and basic damage indices. The results indicate that vibration and noise significantly affect the threshold of the lowest detectable damage, which can be compensated by increasing the excitation signal of the piezoelectric transducer.


2017 ◽  
Vol 89 (6) ◽  
pp. 920-927 ◽  
Author(s):  
Ioan Ursu ◽  
Daniela Enciu ◽  
Adrian Toader

Purpose The purpose of this paper is to report the results of a recent project of complex tests on the survival of structural health monitoring (SHM) technology with piezo wafer active sensors (PWAS) and electromechanical impedance spectroscopy (EMIS) at simulating the concomitant action of harsh conditions of outer space: extreme temperatures, radiations, vacuum. Design/methodology/approach The tests were conducted on PWAS, consists in adhesive and aluminium discs as structural specimens, with PWAS bonded on them. The substantiating of PWAS-EMIS-based SHM technique consists the fact that real part of the PWAS electromechanical impedance spectrum follows with fidelity the resonance behaviour of the structure vibrating under the PWAS excitation. This EMIS signature is very sensitive to any structural changes and, on this basis, can be monitored the onset and progress of structural damages such as fatigue, cracks, corrosion, etc. Findings The conclusion of the tests is that the cumulative impact of severe conditions of temperature, radiation and vacuum has not generated decommissioning of sensors or adhesive, which would have meant the compromise of the methodology. A second important outcome is linked to the capability of this methodology to distinguish between the damages of mechanical origin and the false ones, caused by environmental conditions, which are, basically, harmless. Originality/value The question of transfer of PWAS-EMIS-based SHM technology to space vehicles and applications received, as a novelty, a first and encouraging response.


2016 ◽  
Vol 28 (7) ◽  
pp. 837-850 ◽  
Author(s):  
Demi Ai ◽  
Hui Luo ◽  
Hongping Zhu

Piezoelectric sensor diagnosis and validity assessment as a prior component of structural health monitoring system are necessary in the practical application of electromechanical impedance technique. This article proposed an innovative sensor self-diagnosis process based on extracting the characterization of the real admittance (inverse of impedance) signature within a high-frequency range, which covered both diagnosis on damaged sensor after its installation and discrimination of sensor and structural damages during structural health monitoring process. Theoretical analysis was derived from the impedance model of piezoelectric-bonding layer-structure dynamic interaction system. Experimental investigations on piezoelectric sensor-bonded steel beam involved with structural damages of mass addition and notch damage were conducted to verify the process. It was found that the real admittance was reliable and critical in sensor diagnosis, and sensor faults of debonding, scratch, and breakage can be identified and differentiated from structural damage. Validity assessment of the diagnosed damaged sensor was addressed through resonant frequency shift method. The results showed that the validity of damaged sensor for structural health monitoring was inordinately depreciated by sensor damage. This article is expected to be useful for structural health monitoring application especially when damaged piezoelectric sensors existed.


2018 ◽  
Vol 29 (9) ◽  
pp. 1799-1817 ◽  
Author(s):  
Hamidreza Hoshyarmanesh ◽  
Ali Abbasi

Structural health monitoring of rotary aerospace structures is investigated in this research. A monitoring system is proposed based on the electromechanical impedance spectrum of piezoelectric transducers and a portable transceiver. To investigate the applicability and preliminary results of this method, a turbomachine prototype (laboratory device) is developed, and integrated composite piezoelectric films are deposited on the blades. Next, a self-diagnostic characterization is initially implemented to the piezo-films. Transceiver functionality and accuracy is verified using an Ivium impedance analyzer. The verified measuring path was used in structural health monitoring of pristine and damaged blades at rotational speed of 0 and 1000 r/min. The effects of damage formation and rotational speed on the impedance signature are discussed based on the variations in mechanical impedance using a two-dimensional model. Once damage occurs in a blade at each speed, it results in a frequency shift of the impedance signature at antiresonance peaks compared to the corresponding baseline. The results show a clear frequency shift of existing peaks and the appearance of new peaks as damage grows to a secure minimal detectable size. This achievement confirms the applicability of this method for incipient damage detection on rotary structures prior to any failure.


Sign in / Sign up

Export Citation Format

Share Document